THE COMMUTATIVITY OF SEMIPRIME RINGS WITH SYMMETRIC Bi-(α, α)-DERIVATIONS

Main Article Content

Emine Ko¸ c S¨ og¨ utc¨ u
Oznur G¨ ¨ olba¸ sı

Abstract

Let be a semiprime ring, a nonzero ideal of R× → a symmetric bi-(α, α)-derivation, be the trace of and α an automorphismIn the present paper, we shall prove that contains a nonzero central ideal if any one of the following holds: i) d([x, yα,α± [x,y]α,α∈ Cα,α,ii)[d(x), d(y)]α,α± [x, y]α,α∈ Cα,αiii)d((◦ y)α,α± (◦ y)α,α∈ Cα,α,iv)(d(x◦ d(y))α,α± (xoy)α,α∈ Cα,αv)d((◦ y)α,α± [x, y]α,α∈ Cα,α,vi)(d(x◦ d(y))α,α± [x, y]α,α∈ Cα,αvii)d([x, y]α,α± (◦ y)α,α∈ Cα,α,viii)[d(x), d(y)]α,α± (◦ y)α,α∈ C
α,αix)(x(y± [x, y]α,α∈ Cα,α,x)(x(y)±(◦ y)α,α∈ Cα,αxi)[(x, y]α,α∈ Cα,αxii)[x, y]α,α±[d(x), y]α,α∈ Cα,α,xiii)d(◦ y)α,α ± [d(x),y∈ Cα,αfor all x, y ∈ I.

Article Details

Section
Articles