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Abstract

The distance multigraph of a graph G is the multigraph having the
same vertex set as G with dG(u, v) edges connecting each pair of vertices
u and v, where dG(u, v) is the distance between vertices u and v in G.
In this paper, we introduce a technique to construct a clique decomposi-
tion of the distance multigraph of the Cartesian product of two arbitrary
graphs. Such a construction is accomplished through using clique de-
compostions of the distance multigraphs of the component graphs and
mutually orthogonal Latin squares.

1 Introduction

The distance dG(u, v) between vertices u and v in a graph G is the number of
edges in a shortest path connecting u and v. The distance multigraph D(G)
of a graph G is the multigraph having the same vertex set as G with dG(u, v)
edges connecting each pair of vertices u and v. A clique is a set of pairwise
adjacent vertices. For convenience, sometimes we refer to a clique as a com-
plete subgraph on its vertices. We write Kn{v1, . . . , vn} for an n-vertex clique
on the vertex set {v1, . . . , vn}. A biclique is a complete bipartite graph. A de-
composition of a graph G is a collection of subgraphs of G such that each edge

1Supported by Science Achievement Scholarship of Thailand.
2 Corresponding Author.
Key words: distance multigraph, clique decomposition, Latin square.
2010 AMS Mathematics classification: 05C12, 05C70.

9



10 Clique decompositions of the distance multigraph of...

of G belongs to exactly one subgraph in the collection. If all subgraphs in the
collection are cliques (or bicliques), then it is called a clique (or biclique, respec-
tively) decomposition. If each subgraph in the collection is isomorphic to H for
some subgraph H of G, then the decomposition is called an H-decomposition.
For instance, Figure 1 illustrates the distance multigraph D(C5) and a K3-
decomposition of D(C5).

Figure 1: A K3-decomposition of the distance multigraph D(C5)

Unless we state multigraphs explicitly, our graphs are simple, finite, and
connected. The Cartesian product of graphs G1 and G2, written G1�G2, is
the graph with vertex set V (G1) × V (G2) in which two vertices (u1, u2) and
(v1, v2) are adjacent if and only if (1) u1 = v1 and u2v2 ∈ E(G2), or (2) u2 = v2

and u1v1 ∈ E(G1). Figure 2 illustrates examples of the Cartesian product of
graphs.

Figure 2: The graph K1,3�P3 and the graph C3�P3�P2

There are a wide range of applications of distance multigraphs in commu-
nication networks. For example, distance multigraphs can be used to solve the
problem of finding a shortest route to transmit messages in a computer network.
In this problem, a graph model can be produced by considering each computer
as a vertex where any pair of vertices are adjacent if and only if messages can
be transmitted between their corresponding computers. In 1971, Graham and
Pollak [4] solved this kind of problem by devising an algorithm to label each
vertex (formally says address) with a string of symbols from {0, 1, ∗} of length
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n. Furthermore, they require that the distance between each pair of vertices
equals the number of positions in which one vertex has symbol 0 and the other
one has symbol 1. Their goal is to minimize the length n of such addresses.
Their approach is equivalent to finding a minimum biclique decomposition of
the distance multigraph of the network graph; each position of an addressing
represents one biclique in the decomposition in such a way that the vertices of
symbols 0 and 1 form the two partite sets. In 1983, Winkler [8] proved that
for a given graph G, there is always a biclique decomposition of D(G) with
less than |V (G)| bicliques. In 2004, Elzinga et al. [3] showed that any biclique
decompositions of the distance multigraph of the Petersen graph must have
at least six bicliques. Analogously, the existence of a clique decomposition of
the distance multigraph is equivalent to the existence of an addressing with a
string of symbols from {0, 1} to each vertex in such a way that the distance
between each pair of vertices equals the number of positions in their respective
addresses, which both equal 1. Each position of an addressing represents one
clique in the decomposition formed simply by all vertices of symbol 1. For
example, we can address the vertices v1, v2, . . . , v5 which are ordered around
the cycle C5 by 10101, 11010, 01101, 10110 and 01011. This yields a clique
decomposition of D(C5), composing of five triangles {v1, v2, v4}, {v2, v3, v5},
{v3, v4, v1}, {v4, v5, v2}, {v5, v1, v3}, respectively. Recently, in 2008, Cavers
et al. [2] studied the problem of clique partition number (clique decomposi-
tion with minimum number of cliques) of distance multigraphs of a variety of
graphs, namely, paths, cycles and complete multipartite graphs. In this paper,
we introduce a technique to construct a clique decomposition of the distance
multigraph of the Cartesian product of graphs in terms of clique decomposi-
tions of its original distance multigraphs. Interestingly, our results also yield an
upper bound for the clique partition number of the distance multigraphs of the
Cartesian product of some graphs such as odd cycles, the complete 3-partite
graphs with partite sets of size 3t, and Petersen graphs [Corollary 3.3].

A Latin square of order n is an n×n array of n symbols in which each symbol
occurs exactly once in each row and in each column. Unless stated otherwise,
the symbol set of a Latin square of order n is {1, 2, . . . , n}. For Latin square
L, we write Lij for its entry in row i and column j. Two Latin squares L1

and L2 of the same order n are orthogonal if the n2 ordered pairs resulting
from superimposing the two Latin squares are distinct. A collection L of Latin
squares is mutually orthogonal if all pairs of Latin squares in L are orthogonal.
The size of a largest possible collection of mutually orthogonal Latin squares
of order n is denoted N(n). For brevity, we abbreviate mutually orthogonal
Latin squares to MOLS. For any integer n > 1, we have 1 ≤ N(n) ≤ n−1.(See
more details in [7]). Built upon a series of research articles, it was finally
proved in [1] that if n �= 2 and n �= 6, then N(n) ≥ 2. The following three
theorems regarding the existence of MOLS will be used to construct a clique
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decomposition of D(G1� · · ·�Gm) from clique decompositions of D(G1), . . . ,
D(Gm). We recall them here for future references.

Theorem 1.1. [1] There exists a pair of orthogonal Latin squares of every
order except 2 and 6.

Theorem 1.2. [6] If n is a prime power, then N(n) = n − 1.

Theorem 1.3. [6] If n = pa1
1 pa2

2 . . . par
r , where the pi are distinct primes and

each ai ≥ 1, then min{N(pai

i ) : i = 1, 2, . . . , r} ≤ N(n) ≤ n − 1.
In particular, N(n1 × n2) ≥ min{N(n1), N(n2)} for any positive integers

n1 and n2.

2 A Clique Decomposition of D(G1� · · ·�Gm)

The first lemma gives the number of edges in the distance multigraph of the
Cartesian product of graphs. In order to prove our lemma, we use the following
theorem which was proven in [5].

Theorem 2.1. [5] Let G be the Cartesian product of graphs G1, . . . , Gm and
let u = (u1, . . . , um) and v = (v1, . . . , vm) be vertices in G. Then dG(u, v) =∑m

i=1 dGi(ui, vi).

Lemma 2.2. Let G be the Cartesian product of graphs G1, . . . , Gm with
n1, . . . , nm vertices, respectively. Then |E(D(G))| =

∑m
i=1 α2

i |E(D(Gi))| where
αi =

∏
k∈{1,2,...,m}\{i} nk.

Proof. Theorem 2.1 yields the following result: for every vertex u = (u1, . . . , um)
∈ V (G), its degree in D(G) can be computed by

degD(G)(u) =
∑

v∈V (G)

dG(u, v) =
∑

v=(v1,...,vm)∈V (G)

(
m∑

i=1

dGi(ui, vi))

=
m∑

i=1

αi degD(Gi)(ui).

Note that the last equality holds because G contains αi copies of Gi, for i =
1, 2, . . . , m. Hence

|E(D(G))| =
1
2

∑

v∈V (G)

degD(G)(v) =
1
2

∑

v∈V (G)

m∑

i=1

αi degD(Gi)(vi)

=
1
2

m∑

i=1

(αi

∑

v∈V (G)

degD(Gi)(vi))

=
m∑

i=1

(α2
i

1
2

∑

vi∈V (Gi)

degD(Gi)(vi)) =
m∑

i=1

α2
i |E(D(Gi))|.
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�
Our technique will use MOLS to generate cliques in a clique decomposition

of D(G1� · · ·�Gm) from clique decompositions of D(G1), . . . , D(Gm). First,
we will start with the case m = 2. Note that throughout the paper any clique
decomposition contains only cliques of minimum size two.

Theorem 2.3. Given graphs G1 and G2 with n1 and n2 vertices, respectively.
Let P(D(G1)) and P(D(G2)) be clique decompositions of D(G1) and D(G2),
respectively. If the maximum size of cliques in P(D(G1)) and P(D(G2)) are at
most N(n2) + 2 and N(n1) + 2, respectively, then there exists a clique decom-
position of D(G1�G2)) with |P(D(G1))|n2

2 + |P(D(G2))|n2
1 cliques.

Moreover, D(G1�G2) can be decomposed into ajn
2
2 + bjn

2
1 copies of Kj for

j = 2, 3, . . . , max{N(n2) + 2, N(n1) + 2}, where aj and bj are the number of
copies of Kj in P(D(G1)) and P(D(G2)), respectively.

Proof. Let V (G1) = {1, . . . , n1} and V (G2) = {1, . . . , n2}. Let {L1, . . . , LN(n1)}
be a set of N(n1) MOLS on the symbol set {1, 2, . . . , n1} and {S1, . . . , SN(n2)}
be a set of N(n2) MOLS on the symbol set {1, 2, . . . , n2}. We create the clique
decomposition of G1�G2, denoted P(D(G1 � G2)), by generating cliques from
P(D(G1)) ∪ P(D(G2)) as follows.

Let Q ∈ P(D(G1)) ∪ P(D(G2)) and let V (Q) = {x1, . . . , xs}. First, if
Q ∈ P(D(G1)) then by the assumption s is at most N(n2) + 2. For all pairs
k, l ∈ {1, 2, . . . , n2}, include the clique {(x1, k), (x2, l), (x3, S

1
kl), . . . , (xs, S

s−2
kl )}

in P(D(G1 � G2)). On the other hand, if Q ∈ P(D(G2)) then s is at
most N(n1) + 2. Again, for all pairs k, l ∈ {1, 2, . . . , n1}, include the clique
{(k, x1), (l, x2), (L1

kl, x3), . . . , (Ls−2
kl , xs)} in P(D(G1 � G2)).

By above, we get P(D(G1�G2)) which has |P(D(G1))|n2
2 + |P(D(G2))|n2

1

cliques consisting of ajn
2
2 + bjn

2
1 copies of Kj for j = 2, 3, . . . , max{N(n2) +

2, N(n1) + 2}. Therefore P(D(G1�G2)) can cover at most |E(D(G1))|n2
2 +

|E(D(G2))|n2
1 = |E(D(G1�G2))| edges by Lemma 2.2.

Hence it suffices to show that each edge of D(G1�G2) is in a clique of
P(D(G1�G2)). Let u = (u1, u2) and v = (v1, v2) be two distinct vertices in
D(G1�G2). Note that there are dG1(u1, v1) cliques in P(D(G1)) that contain
both u1 and v1. Assume that Q is one such clique. Since {S1, . . . , SN(n2)} is a
set of MOLS, by our construction there always exists a clique in P(D(G1�G2))
generated from Q that contains both u and v. Therefore both u and v are
together in at least dG1(u1, v1) cliques in P(D(G1�G2)). Similarly, both u and
v are together in at least dG2(u2, v2) other cliques in P(D(G1�G2)). Hence,
by Theorem 2.1, there are at least dG1�G2(u, v) cliques in P(D(G1�G2)) that
contain both u and v. �

To further illustrate the construction in Theorem 2.3, we give the following
example.
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Example 2.4. Let P(D(K1,3)) = {K4{1, 2, 3, 4}, K3{2, 3, 4}} and P(D(P3)) =
{K3{1, 2, 3}, K2{1, 3}} be clique decompositions of D(K1,3) and D(P3) as shown
in Figure 3. Here we write uv instead of a vertex (u, v) in K1,3�P3. We use a
Latin square of order 4, namely, L1 and two MOLS of order 3, namely, S1 and
S2 as shown in Figure 4 to generate P(D(K1,3�P3)), a clique decomposition
of D(K1,3�P3).

Therefore, we obtain P(D(K1,3�P3)) as shown in Figure 5. The cliques in
column A and B are generated by K4{1, 2, 3, 4} of P(D(K1,3)) and K3{2, 3, 4}
of P(D(K1,3)), respectively. Similarly, the cliques in column C and D are
generated by K3{1, 2, 3} of P(D(P3)) and K2{1, 3} of P(D(P3)), respectively.

Figure 3: Clique decompositions of D(K1,3) and D(P3)

Figure 4: A Latin square of order 4 and two MOLS of order 3

The next theorem is a generalization of Theorem 2.3 to a distance multi-
graph of the Cartesian product of an arbitrary number of factors under certain
assumptions.

Theorem 2.5. Let G be the Cartesian product of graphs G1, . . . , Gm with
n1, . . . , nm vertices, respectively. For each i = 1, 2, . . . , m, let P(D(Gi)) be a
clique decomposition of D(Gi). If the maximum size of cliques in P(D(Gi))
is at most mink∈{1,2,...,m}\{i}{N(nk) + 2}, for all i = 1, 2, . . . , m, then there
exists a clique decomposition of D(G) with

∑m
i=1 |P(D(Gi))|α2

i cliques where
αi =

∏
k∈{1,2,...,m}\{i} nk.

Proof. First note that the simple induction will not work since we lose control
of the maximum size of cliques to go forward in the inductive step. Instead,
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Figure 5: All cliques in P(D(K1,3�P3))

we proceed by claiming that the clique decomposition of D(G) = D((G1�G2)
�G3) � · · ·�Gm) can be constructed inductively by repeatedly using Theorem
2.3. Consider D((G1�G2)�G3)� · · ·�Gt) for i = 2, 3, . . . . The basis step (i =
2) is just the result of Theorem 2.3. Assume the inductive step i = m−1. The
key observation is that all the resulting cliques in the decomposition generated
by the construction in Theorem 2.3 have size at most those of the original
cliques. Since, by our assumption, for each i = 1, 2, . . . , m, the maximum size
of cliques in P(D(Gi)) is at most mink∈{1,2,...,m}\{i}{N(nk)+ 2}, we have that
all cliques in the decomposition of D(G1�G2� · · ·�Gm−1) have size no greater
than N(nm) + 2. Moreover, the sizes of the cliques in P(D(Gm)) are also
at most mink∈{1,2,...,m−1}{N(nk) + 2} ≤ N(n1n2 . . . nm−1) + 2 by Theorem
1.3. We then can apply Theorem 2.3 again to have a clique decomposition
P(D(G1� · · ·�Gm)) of size

|P(D(G1� · · ·�Gm−1))|n2
m + |P(D(Gm))|(n1n2 · · ·nm−1)2.

By induction hypothesis, |P(D(G1� · · ·�Gm−1))| = (
∑m−1

i=1 |P(D(Gi))|β2
i )n2

m

where βi =
∏

k∈{1,2,...,m−1}\{i} nk. Therefore

|P(D(G1� · · ·�Gm))| =
∑m

i=1 |P(D(Gi))|α2
i

where αi =
∏

k∈{1,2,...,m}\{i} nk as desired. �
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We can improve the result in Theorem 2.5 by raising the maximum limit of
the clique sizes in the original clique decompositions. Theorem 1.3 guarantees
that the maximum size of cliques in a clique decomposition of D(Gi) in Theorem
2.6 is larger than those in Theorem 2.5.

Theorem 2.6. Let G be the Cartesian product of graphs G1, . . . , Gm with
n1, . . . , nm vertices, respectively. For each i = 1, 2, . . . , m, let P(D(Gi)) be a
clique decomposition of D(Gi). If for each i = 1, 2, . . . , m, the maximum size of
cliques in P(D(Gi)) is at most N(αi)+2, where αi =

∏
k∈{1,2,...,m}\{i} nk, then

there exists a clique decomposition of D(G) with
∑m

i=1 |P(D(Gi))|α2
i cliques.

Proof. We create the clique decomposition of D(G), denoted P(D(G)), by gen-
erating cliques from

⋃m
i=1 P(D(Gi)) as follows.

Let Q ∈ ⋃m
i=1 P(D(Gi)) and V (Q) = {x1, . . . , xs}. Assume that Q ∈

P(D(Gt)) for some t ∈ {1, 2, . . . , m}. Then, s ≤ N(αt) + 2. Now let {L1, . . . ,
LN(αt)} be a set of N(αt) MOLS on the symbol set {1, 2, . . . , n1} × · · · ×
{1, 2, . . . , nt−1} × {1, 2, . . . , nt+1} × · · · × {1, 2, . . . , nm}.

Then the α2
t desired cliques generated from Q are given by

{(ya
1 , ya

2 , . . . , ya
t−1, xa, y

a
t+1, . . . , y

a
m) : a = 1, 2, . . . , s− 2}

∪{(k1, k2, . . . , kt−1, xs−1, kt+1, . . . , km), (l1, l2, . . . , lt−1, xs, lt+1, . . . , lm)},

for k = (k1, k2, . . . , km) ∈ {1, 2, . . . , n1} × {1, 2, . . . , n2} × · · · × {1, 2, . . . , nm}
and l = (l1, l2, . . . , lm) ∈ {1, 2, . . . , n1} × {1, 2, . . . , n2} × · · · × {1, 2, . . . , nm},
where (ya

1 , ya
2 , . . . , ya

m) = La
kl, for 1 ≤ a ≤ s − 2.

From the above construction, we obtain P(D(G)) which has a total of∑m
i=1 α2

i |P(D(Gi))| cliques consisting of
∑m

i=1 a
(i)
j α2

i copies of Kj for j =
2, 3, . . . , maxi∈{1,2,...,m} {N(αi) + 2}. It follows by Lemma 2.2 that P(D(G))
can cover at most

∑m
i=1 α2

i |E(D(Gi))| = |E(D(G))| edges.
Now it remains to show that each edge of D(G) is in a clique of P(D(G)).

Let u = (u1, . . . , um) and v = (v1, . . . , vm) be two distinct vertices in D(G). By
Theorem 2.1,there are dG(u, v) =

∑m
i=1 dGi(ui, vi) edges in P(D(G)) connect-

ing u and v. Let i ∈ {1, 2, . . . , m}. By our construction, there are dGi(ui, vi)
cliques in P(D(Gi)) that contain both ui and vi. Assume that Q is one such
clique. Since {L1, . . . , LN(αi)} is a set of MOLS, there always exists a clique in
P(D(G)) generated from Q that contains both u and v. Therefore both u and
v are together in

∑m
i=1 dGi(ui, vi) = dG(u, v) cliques in P(D(G)) as desired. �

3 Additional Comments

The following corollary is the application of Theorem 2.6 together with Theo-
rems 1.1 and 1.2 to some certain graph decompositions.
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Corollary 3.1. Let G be the Cartesian product of graphs G1, . . . , Gm. Then
(i) if D(Gi) has a K3-decomposition, for i = 1, 2, . . . , m then D(G) also has

a K3-decomposition,
(ii) if |V (Gi)| �= 6 and D(Gi) has a K4-decomposition, for i = 1, 2, . . . , m

then D(G) also has a K4-decomposition,
(iii) if for all i = 1, 2, . . . , m, |V (Gi)| is a prime power and D(Gi) has a

Ks-decomposition where s ≤ minj∈{1,2,...,m}{|V (Gj)|} + 1 then D(G) also has
a Ks-decomposition.

Now, we would like to point out the following interesting results, which
essentially appear in [2], on the clique decompositions of some distance multi-
graphs.

Theorem 3.2. [2] (i) The distance multigraph of an odd cycle has a K3-
decomposition.

(ii) For t ∈ N, the distance multigraph of the complete multipartite graph
K3t,3t,3t has a K2(3t)-decomposition.

(iii) The distance multigraph of the Petersen graph has a K6-decomposition.
(iv) The distance multigraph of the complete multipartite graph K2,2,2 has

a K4-decomposition.
(v) Let G be the complete multipartite graph Kn1,...,nk, where n1 + · · ·+ nk

is a prime power and each partite set has size at least two. Then D(G) can be
decomposed into Kn1 , . . . , Knk and Kn1+···+nk .

It should be emphasized that our construction technique gives a clique de-
composition of the distance multigraph of the Cartesian product of graphs in
terms of clique decompositions of its original distance multigraphs. Hence, by
certain clique decompositions in Theorem 3.2 and our results, we obtain the
following corollary.

Corollary 3.3. (i) The distance multigraph of the Cartesian product of odd
cycles has a K3-decomposition.

(ii) For t ∈ N, the distance multigraph of the Cartesian product of the com-
plete multipartite graphs K3t,3t,3t has a K2(3t)-decomposition.

(iii) The distance multigraph of the Cartesian product of at least three Pe-
tersen graphs has a K6-decomposition.

(iv) The distance multigraph of the Cartesian product of at least three com-
plete multipartite graphs K2,2,2 has a K4-decomposition.

(v) For i = 1, 2, . . . , m, let Gi be a complete k-partite graph of p vertices
where p is a prime power. Then D(G1� · · ·�Gm) can be decomposed into
copies of Kp together with copies of Kz for all sizes z of partite sets in each
graph Gi for all i.

Proof. (i) and (ii) follow directly from Theorem 3.2 and Corollary 3.1. (v)
is straightforward by Theorem 2.5 and Theorem 1.2. To prove (iii) let G be
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the Cartesian product of m Petersen graphs where m ≥ 3. So |V (G)| = 10m.
By Theorem 2.6, the maximum size of cliques in a clique decomposition of
each distance multigraph of the Petersen graph that can be generated to a
clique decomposition of D(G) equals N(100) + 2 = 8 + 2 = 10 if m = 3, and
equals N(10m−1) + 2 = N(2m−15m−1) + 2 ≥ min{2m−1 − 1, 5m−1 − 1} + 2 ≥
min{24−1− 1, 54−1− 1}+ 2 = 7 +2 = 9 if m ≥ 4. However, this technique can
not apply to the Cartesian product of two Petersen graphs because N(10)+2 =
2 + 2 = 4. (iv) follows similarly. �
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