
East-West J. of Mathematics: Vol. 26, No 1 (2025) pp. 46-60

https://doi.org/10.36853/ewjm0411

FORECASTING OF CHANGES IN SALINITY

INTRUSION IN THE VIETNAMESE

MEKONG DELTA BY THE COMBINED

MODEL OF LSTM (Long Short-Term Memory)

AND SRM (Sinusoidal Regression Model)

Uyen T. Huynh
University of Economics and Law (UEL), Ho Chi Minh City,

Vietnam National University, Ho Chi Minh City (VNU HCM), Vietnam
e-mail: uyenht@uel.edu.vn

Abstract
The salinity intrusion in the Vietnamese Mekong Delta (VMD) has become

more complex and temporally heterogeneous. This could seriously threaten the
livelihoods of local residents and agricultural activities. Therefore, the research
was conducted by using a combined model of LSTM (Long Short-Term Mem-
ory) and SRM (Sinusoidal Regression Model) to assess the trends and anomalies
of salinity intrusion, with a series of data collected from main stations in the VMD
in the year of 2021. The findings showed that the combined model exhibited high
predictive (R2 = 0.9299, MSE = 2.0861, and MAP E = 0.1276) in fore-
casting the increasing and decreasing trends of salinity intrusion and effectively
detecting anomalous variations. Consequently, these results could be helpful to
policymakers in predicting and responding to future salinity intrusion and to likely
widespread implications for other regions impacted by saline intrusion.

1 Introduction
The Mekong Delta, situated in the southernmost region of Vietnam, stands out as one
of Southeast Asia’s largest and most fertile deltas. This delta is profoundly shaped
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by the ebb and flow of the Mekong River and the tides from the East and West Seas,
resulting in a complex hydrological regime. However, being a low-lying flatland criss-
crossed by an intricate network of rivers, the Mekong Delta is highly susceptible to
the influences of both upstream flows from the Mekong River and tidal regimes from
the East and West Seas. Consequently, the region consistently faces salinity intrusion,
particularly during the dry season from January to May when upstream flows are min-
imal (Hung and Tuan (2019). Recent seawater intrusion into rivers and canals has led
to early-season salinity, adversely affecting the livelihoods and agricultural activities
of residents in various coastal provinces of the Mekong Delta. Projections indicate
a worsening trend in the coming years. The primary drivers of increased salinity in-
trusion are believed to be the impacts of climate change, sea-level rise, and reduced
upstream flows, negatively affecting freshwater supply and agricultural production
(Vu et al. ((2018b)).

A significant body of research has been dedicated to computing, predicting, and
early warning systems for salinity intrusion in the Mekong Delta (MD). These studies
evaluate the integrated effects of climate change and the rapid development of hy-
dropower systems upstream, taking into account variations in rainfall, sea level rise,
and upstream flow. Various methods, such as hydrological models assessing salinity
levels in river basins and hydrodynamic models combined with meteorological and
tidal forecasting models, have been employed to reveal salinity intrusion and hydraulic
regimes in the estuarine region (Bhattacharjya et al. (2009)). In recent years, hydro-
dynamic numerical models, including MIKE 11 and MIKE 21, have been successfully
applied to simulate flow and salinity intrusion in the Hau River and other major rivers
in the VMD region (Vu et al. (2020), Hochreiter and Schmidhuber (1997)). How-
ever, forecasting salinity intrusion for river systems using numerical models remains
challenging due to the vast area, dense river networks, numerous hydraulic activities,
and limited or infrequently updated datasets. On the other hand, artificial neural net-
work (ANN) and autoregressive integrated moving average (ARIMA) models have
seen increased use in modeling water resource variables, showing significant develop-
ments over the past decade. Nonetheless, these models have limitations, particularly
in focusing on a single variable (Trung et al. (2021)).

Therefore, this research proposes an alternative method for predicting salinity in-
trusion in the MD: a combination of Long Short-Term Memory (LSTM) and Sinu-
soidal Regression Model (SRM). The combined model aims to identify trends and
detect abnormal salinity intrusion variations. The input data for the model were col-
lected as a time series from two different locations in the MD, namely Xeo Ro and
Rach Gia, throughout 2021.
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2 Materials

2.1 Study area and data collection

The study area is a coastal area in the Mekong Delta. This study used salinity data at
two monitoring hydrological stations (Xeo Ro and Rach Gia station) in Kien Giang
province. Xeo Ro hydrological station is located on the Cai Lon River, at coordinates
09o52’N, 105o06’E, about 8,000 meters from the mouth of the river into Rach Gia
Bay. Rach Gia monitoring hydrological station is located on the Kien River at coordi-
nates 10o00’N, 105o05’E, not far from the mouth of the river into Rach Gia Bay, about
800 meters. The study area has natural rivers, including Giang Thanh River, Cai Lon
River, and Cai Be River, which are large rivers emptying into the West Vietnam Sea.
It significantly drains floods from the inland to the West Vietnam Sea. However, it is
also susceptible to salinity intrusion from the West Vietnam Sea into the inland during
the dry season. Salinity intrusion, which is caused by seawater flowing from the sea
to inland when not enough fresh water flows to the estuaries, also causes problems for
production and human health. The series of data used is hourly salinity value (from
1 to 23 hours daily) at Rach Gia and Xeo Ro salinity monitoring stations in the dry
season in the year of 2021 (Fig.1). Hourly salinity data were also and collected from
the Hydro-Meteorological Centre of Southern Vietnam.

Figure 1: Salinity Monitoring Stations
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2.2 Long Short-Term Memory Model (LSTM)
2.2.1 Model principle

Long Short-Term Memory (LSTM) plays a crucial role in time series forecasting
across various domains (Gers and Schmidhuber (2000)). This model is founded on
the architecture of Recurrent Neural Networks (RNN). Its power is a ability to com-
prehend and learn intricate relationships within sequential data. To overcome this
challenge, the LSTM model incorporates gating mechanisms, allowing it to regulate
the information flow from the past to the future (Kantoush et al. (2017)). This adap-
tive approach aids the model in capturing accurate trends, significantly enhancing the
accuracy of salinity data predictions (Thai et al. (2021)).

The structure of each LSTM cell is comprised of three essential gates: the forget
gate ( ft), the input gate (it ), and the output gate (ot ) (Fig.2). The model uses
these gates to control which information is retained, discarded, or transmitted to the
next layer. This capability enables LSTM to retain and learn crucial details during
sequence processing (Hoai et al. (2022)).

Figure 2

ht = σ(Wxxt +Wh × ht−1 + b) (2.1)
tt = σ(Wtxxt +Wthht−1 + bt) (2.2)
ot = σ(Woxxt +Wohht−1 + bo) (2.3)

The gate ft Acts like a conveyor belt in the RNN model. However, the LSTM
model possesses the capability to preserve crucial information as needed. This at-
tribute is referred to as Long-Term Memory and is absent in the RNN model. Thus,
the LSTM model encompasses both short-term and long-term memory properties.

2.2.2 Model Evaluation Metrics

In this research, the forecasting quality of the LSTM model is accessed by the follow-
ing metrics (Hoai et al. (2022)):
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- Pearson Correlation Coefficient (R2): when this coefficient reaches 1, the LSTM
model accurately reflects the data trend; otherwise, it fails. The formula for the corre-
lation coefficient is as follows:

R2 = 1−
∑

(yi − ŷi)2∑
(yi − ȳ)2 (2.4)

- Mean Squared Error (MSE): this commonly used performance measure in pre-
diction and regression tasks approaches 0 when the model’s predictions are more ac-
curate. An increasing value indicates a greater deviation from the actual data:

MSE = 1
N

N∑
i=1

(yi − ŷi)2 (2.5)

- Mean Absolute Error (MAE): Similar to MSE, MAE is a performance measure
with properties resembling MSE, but outliers do not influence it:

MAE = 1
N

N∑
i=1
|yi − ŷi|

- Mean Absolute Percentage Error MAPE: This metric differs from MSE and MAE
in that it does not consider the units of measurement of the models because the error
is presented in the form of a percentage. When MAPE is closer to 0%, the model is
better, and as it increases, the model deviates further from the actual data:

MAPE = 100
N

N∑
i=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣ (2.6)

2.2.3 The Algorithm steps

• Step 1: Forget Gate (ft):

The forget gate decides what information to discard from the cell state. It uses
the current input xt and the previous hidden state ht−1 :

ft = σ(Wt[ht−1,xt ] + bf )

• Step 2: Input Gate (it)

The input gate decides what new information to store in the cell state. It consists
of two parts: the gate layer that decides which values will be updated and the
C̃t layer that creates a vector of new candidate values:

it = σ(Wi · [ht−1, xt] + bi),
C̃t = tanh(Wc · [ht−1, xt] + bC).
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Step 3: Updating Cell State (Ct)

The new cell state Ct is a combination of the old cell state Ct−1, updated by the
forget gate, and the new candidate values, scaled by the input gate:

Ct = ft ∗ Ct−1 + it ∗ C̃t

Step 4: Output Gate (ot)

The output gate decides what part of the cell state to output. It uses the current
input xt and the previous hidden state ht−1:

ot = σ(Wo · [ht−1, xt] + bo)

The final output ht is based on the cell state passed through a tanh function,
scaled by the output gate:

ht = ot ∗ tanh(Ct)

where σ: Sigmoid activation function, outputs between 0 and 1, tanh: Hyper-
bolic tangent function, outputs between -1 and 1; Wf ,Wi,WC ,Wo: Weight
matrices for the forget, input, cell, and output gates; bf , bi, bC , bo: Bias vectors
for the forget, input, cell, and output gates; ht−1: Hidden state from the previ-
ous time step; xt: Current input; Ct−1: Cell state from the previous time step;
ft: Forget gate output; it: Input gate output; C̃t: Candidate cell state; Ct: Cell
state; ot: Output gate; ht: Hidden state (output) at the current time step.

2.2.4. Model Setup

The parameters of the LSTM model in Xeo Ro and Rach Gia are discussed in
Table 1. These parameters are based on the characteristics of the trends and
seasons in each respective region:

The calculations were performed using Python 3.7 with the following libraries:
Pandas and NumPy for data formatting; Keras, TensorFlow, and Scikit-learn for
training and parameter computation. Graphs were plotted using R 4.2 via the
ggplot2 package. Input data consisted of hourly time series from 2021 at the
Rach Gia and Xeo Ro sites as training data.
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Table 1: LSTM model parameters

Parameter Xeo Ro Rach Gia
Number of hidden layers 128 64
Dropout 0.2 0.2
Learning rate 0.005 0.005
Batch size 16 32
Epochs 200 200

2.3. Sinusoidal Regression Model (SRM)

2.3.1. Model Principle

Data collected at Xeo Ro and Rach Gia were measured every 2 hours from 1 to
23 hours daily. Since the data exhibit time-dependent oscillations and wave-like
patterns, a Sinusoidal Regression Model (SRM) over time (t = 1, 3, 5, . . . , 23)
is used to predict salinity for new observations. The SRM is a trigonometric
model that best fits a sinusoidal curve. Rather than fitting a straight line, this
approach aims to enhance accuracy in modeling naturally occurring cyclic phe-
nomena. Figures 3 (not shown here) depict daily salinity cycles at Xeo Ro and
Rach Gia, highlighting daily fluctuations.

Figure 3: The daily salinity cycle at the Rach Gia and Xeo Ro site measured in January
2021

where t = {1, 3, . . . , 23} represents the time of measurement during the day, and 12
measurement times during the day are selected sequentially as t = {t1, t2, . . . , t12}
that why our Fig.3 have only 12 days
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2.2.4 Model Setup

The Sinusoidal Regression Model (SRM) with salinity data measured at Xeo Ro and
Rach Gia is set up as follows:

Y (m, t) = A · sin(ωt+ φ) + C + ε(m, t)

where: t = {1, 3, . . . , 23} represents the time of measurement during the day, and
12 measurement times during the day are selected sequentially as t = {t1, t2, . . . , t12},
m = {1, 2, 3, . . . , 21} denotes the measurement day in the month; A: amplitude; ω:
angular frequency; φ: phase shift; C: vertical shift (baseline); ε(m, t): error term.

The residual is determined as follows:

e(m, t) = Y (m, t)− Ŷ (m, t) (2.7)

Since this is a nonlinear model, R2 is not employed to evaluate the fit. Instead, the
residuals are modified using the following transformation:

e∗(m, t) = [e(m, t)−min(e(m, t))] ≥ 0 (2.8)

with the formulas for e(m, t) and e∗(m, t), the residuals are estimated by the
model at Xeo Ro and Rach Gia. These are illustrated in Fig. 4.

Figure 4: Histograms of e(t, k) and e∗(t, k) at Rach Gia

The Weibull distribution is used for testing and comparison that examines the suit-
ability of e∗(t, k) with a particular distribution. The results are demonstrated in Fig.
5.

In this case, the predictive model is estimated based on the formula:

Ŷ (m, t)−min(e(m, t)) = Â · sin(ω̂t+ φ̂) + Ĉ + e∗(m, t) (11)

In the context provided, Extreme Value Distributions are utilized to characterize the
extreme values of salinity peaks observed during monitoring. Extreme value distribu-
tions are the limiting distributions for the minimum or the maximum of a very large
collection of random observations from the same arbitrary distribution. In this study,
focus is placed on the maximum or minimum salinity peak values during monitoring.
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Figure 5: The suitability e∗(t, k) of to the Weibull Distribution at Rach Gia and Xeo
Ro

The transformation of e(t, k) into e∗(t, k) , where e∗(t, k) ≥ 0 satisfies the condition
of the Weibull distribution and applies it to find the estimated parameters. After es-
timating the parameters for formula (11), the SRM model’s result is used to estimate
the time intervals for the LSTM model.

3 Results and Discussion

3.1 LSTM Model
The errors shown in Table 2 resulted from the LSTM model using data collected at the
Xeo Ro and Rach Gia sites with trained parameters.

Table 2: LSTM Model Training Results

Training Errors Xeo Ro Rach Gia
MSE 2.0861 0.1367
MAE 0.9555 0.0667
R2 0.9299 0.6218
MAPE 0.1276 0.1681

Table 2 demonstrates the error metrics of the LSTM model for Xeo Ro and Rach
Gia. The MSE, MAE, and MAPE values are impressively low, indicating excellent
training performance. However, the R2 for Rach Gia is 0.6218, lower than Xeo Ro’s
0.9299, suggesting that the trend-fitting capability of the LSTM model in Rach Gia is
less optimal compared to Xeo Ro.

Fig.6 illustrates forecasts of salinity fluctuations for the next year at the Xeo Ro
and Rach Gia sites. The simulated and measured results showed a similar trend. How-
ever, there was a difference in the predicted salinity values between the Xeo Ro and
Rach Gia sites. At the Xeo Ro site, the forecasting results aligned well with the mea-
sured data, indicating that the model obtained a fitting estimate of the cyclic variations
in salinity. On the other hand, at the Rach Gia site, due to the high randomness in
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Figure 6: Training and Forecasting Results of the LSTM Model

the input data, the simulated and measured results agreed regarding the trend but did
not match precisely regarding values. Thus, the model only produced predictions
without accurately reproducing the salinity peaks observed in the previous year. The
LSTM model showed training results, which were relatively good performance (Table
2 and Fig. 9). Particularly, considering the low values of MSE (2.0861) and MAE
(0.9555) at the Xeo Ro site indicated that there was a relatively low deviation be-
tween the modeled and measured values. This could reflect the complexity of the
data, which tended to change continuously but still followed the tidal cycle. Thus, the
model could be able to provide reasonably accurate predictions. The high R2 value
at the Xeo Ro site (0.9299) illustrated that the LSTM model’s training results con-
formed to the cyclic changes in salinity over time. Finally, the relatively low value
of MAPE (0.1276) showed that the training results of the model had a significantly
slight deviation compared to the measured data. In Rach Gia, the model results reveal
discrepancies in the error metrics, as illustrated in Table 1 and Figure 9. The MSE
(0.1367), MAE (0.0667), and MAPE (0.1681) errors in Rach Gia are relatively low,
indicating a favorable performance, but the R2 (0.6218) stands at a moderate level.
The root cause lies in the time series data for Rach Gia, which fails to exhibit cyclic
patterns and includes some unusual salinity peaks. Consequently, the time series of
Rach Gia demonstrates a random nature. Therefore, the LSTM model has not yet
achieved accurate forecasting of these salinity peaks (see in Fig. 9). Therefore, the
model accurately simulated both the trend and the values, as indicated by a low MAPE
of 0.1276, at the Xeo Ro site. While the Rach Gia site model simulated the cyclic pat-
tern well, the measured and simulated results did not agree totally at the peak with an
estimated value of around 11 ‰. Nevertheless, the model error remained small, with a
MAPE of 0.1681. Therefore, this result could provide the basis for forecasting future
changes in saline intrusion. In this study, the LSTM model was utilized for forecasting
the upcoming year. The results are illustrated in Fig.9. The forecasted line demon-
strates the trend and cyclic variations in salinity for the next year based on the input
data and the LSTM model. The obtained results in Xeo Ro exhibit salinity variations
that align with the input data characteristics. For Rach Gia, the forecasting results also
indicate the presence of salinity peaks, but the cyclic variations are not clearly evident,
differing from the input data.
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2.4.2. SRM Model

To estimate these parameters, you can use a combination of linear and non-linear
regression techniques. Then, we can get the estimate Vertical Shift (C), Amplitude
(A), Angular Frequency (ω), and Phase Shift (ϕ) as follows:

Ĉ = 1
n

n∑
t=1

y(t), α̂ = A cos(φ), β̂ = A sin(φ), Â =
√
α2 + β2, φ̂ = arctan

(
β

α

)
The parameter estimation for the SRM model (equation 2.2) at the Xeo Ro and Rach
Gia sites is presented in Table 3.

Table 3: Estimated Parameters of the SRM Model.

Estimated Parameters of the SRM Model Xeo Ro Rach Gia
Â -0.6492* 0.0133*
ω̂ 5.7697* 0.6549*
φ̂ -6.3647* 4.1319*
Ĉ 9.7502* 0.2448*

*Statistically significant at the 0.05 significance level

All parameters in both measured salinity sites are statistically significant, indicat-
ing that the SRM model was well-suited for estimating salinity values in both Xeo Ro
and Rach Gia sites. This could be because salinity varied cyclically with tidal pat-
terns; the SRM model was built as a sinusoidal function that obtained these cyclical
changes. Determining the Y (m, t) cycle is crucial to finding precise parameters. Us-
ing the Weibull distribution for error instead of the Normal distribution corrected for
the asymmetric error in the model.

Figure 7: Combined Results of the SRM and LSTM Model

Using the Weibull distribution for error terms—rather than the normal distribu-
tion—corrects for asymmetry in model residuals.
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Figure 6 illustrates forecasts of salinity fluctuations for the next year at the Xeo
Ro and Rach Gia sites. The simulated and measured results showed a similar trend.
However, differences in the predicted salinity values were observed:

• Xeo Ro: The forecasting results closely matched measured data, indicating that
the model accurately captured cyclic salinity variation.

• Rach Gia: Due to high randomness in the input data, the predicted values
aligned with the trend but did not precisely match the observed salinity peaks.

The LSTM model showed relatively good performance based on Table 2 and Fig-
ure 6:

These metrics reflect:

• Low deviation between modeled and measured values at Xeo Ro.

• Strong agreement with cyclic tidal patterns at Xeo Ro.

• Moderate agreement at Rach Gia due to irregular, non-cyclic salinity peaks.

While the LSTM model simulated the general trend well at both sites, it was more
accurate at Xeo Ro. For Rach Gia, salinity peak predictions were less reliable, though
errors remained relatively small.

2.4.3 Performance Comparison

Algorithmic Steps of Leave One Out of Bootstrap (LOOB)
Apply the Leave One Out of Bootstrap (LOOB) algorithm with n = 67 days. In
LOOB, remove Day −d and use the remaining 66 days to estimate A,w, φ,C and the
parameters for the distribution of ε. Call these as Â−d, ω̂−d, φ̂−d, Ĉ−d

Ŷ (−d)(1, 1) = Â−d · sin(ω̂−d · 1 + φ̂−d) + Ĉ−d (3.1)
...

Ŷ (−d)(1, 12) = Â−d · sin(ω̂−d · 12 + φ̂−d) + Ĉ−d (3.2)

Obtain the observed residual with the first day (Day −d) removed as

e(−d)(d, 1) = Y (d, 1)− Ŷ (d, 1) (3.3)
... (3.4)

e(−d)(d, 12) = Y (d, 12)− Ŷ (d, 12)
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In this step, we can find the modified residuals and estimated parameter using
MLE method, d = 1, 2, . . . , D(= 67).

Then we find

PRMSE =

√√√√ 1
n

D∑
d=1

12∑
k=1

e(−d)(d, k)2 (3.5)

PMAE = 1
D

D∑
d=1

12∑
k=1
|e(−d)(d, k)| (3.6)

where: D = 67 (days); k = 1, 2, . . . , 12 (hours); PRMSE: Prediction Root Mean
Squared Error; PMAE: Prediction Mean Absolute Error.

Model Evaluation Results

Rach Gia Xeo Ro
Model PRMSE PMAE Model PRMSE PMAE
LSTM 0.36 0.25 LSTM 12.05 8.14
SRM 0.14 0.09 SRM 5.64 4.86

Table 4: PRMSE and PMAE for Rach Gia and Xeo Ro using LSTM and SRM models

The research results revealed that the lower and upper bounds of the estimates in-
cluded the abnormal salinity peaks that the LSTM model initially could not accurately
predict (Fig.6). However, the current model did not provide individual point fore-
casts; instead, it generated ranges that consisted of lower and upper bounds, which
still followed the pattern of measured values. The size of the forecast intervals varied
depending on the cyclical variation in the trained data.

The rising salinity measurements were within the forecast range at the Rach Gia
site. This range represented the highest variability in the forecasting results. In the
final phase, as the level of variability decreased, the field became more consistent.The
forecasting intervals continuously change. This could be because the data measured
at the Xeo Ro site have fewer abnormal peaks; however, the measured values still ex-
hibited continuous variations with small amplitudes. Therefore, the forecast intervals
also had to follow these changing patterns. Thus, the SRM model coupled with the
LSTM model has generated results that accurately illustrate the nature of the mea-
sured values. These results conformed to the cyclical patterns of the measurements
and stabilized the value of sudden fluctuations.

The forecasting results in Fig.7, the prediction intervals provide salinity results
within the next cycle. This allows the forecasting results to have higher reliability
compared to using only the LSTM model. When the data lacks cyclicality, as in Rach
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Gia, interval forecasting results indicate the range of fluctuations in the next step rather
than a single value. Thus, the SRM model has addressed the previous limitation of the
LSTM model when predicting for Rach Gia.

4 Conclusion

A salinity forecasting model has been developed based on 2021 monitoring data at the
Xeo Ro and Rach sites using the Long Short-Term Memory (LSTM) model coupling
with the Sinusoidal Regression Model (SRM). The computed results demonstrated
that the developed model could simulate cyclical patterns and abnormal values well.
By combining these two models, the research has addressed the limitation of being
unable to model abnormal values in time series forecasting using only the LSTM
model. This advantage allows the model to be widely applied to various environmental
management-related data. Furthermore, the study proposed that the input data should
be measured in a more extended time series, covering several years, which creates a
more generalizable model suitable for multiple regions. In addition, the model can
enhance accuracy by considering additional input variables related to hydrological
factors.
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