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Abstract
In this paper, we consider the Kirchhoff-type equation for a class of

nonlinear operators containing p(·)-Laplacian and mean curvature oper-
ator with mixed boundary conditions. More precisely, we are concerned
with the problem under the Dirichlet condition on a part of the boundary
and the Steklov boundary condition on an another part of the boundary.
We show the existence of one, two and infinitely many nontrivial weak
solutions of the equation according to the conditions on given functions.

Keywords.

1 Introduction

In this paper, we consider the following Kirchhoff-type equation
−M

(∫
Ω

A(y,∇u(y))dy

)
div [a(x,∇u(x))] = f(x, u(x)) in Ω,

u(x) = 0 on Γ1,

M

(∫
Ω

A(y,∇u(y))dy

)
n(x) · a(x,∇u(x)) = g(x, u(x)) on Γ2.

(1.1)

Here Ω is a bounded domain of RN (N ≥ 2) with a Lipschitz-continuous
(C0,1 for short) boundary Γ satisfying that

Γ1 and Γ2 are disjoint open subsets of Γ such that Γ1 ∪ Γ2 = Γ and Γ1 6= ∅,
(1.2)

0
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and the vector field n denotes the unit, outer, normal vector to Γ. The
function a(x, ξ) = ∇ξA(x, ξ) is a Carathéodory function on Ω × RN satis-
fying some structure conditions depending on an anisotropic exponent func-
tion p(x). Then the operator div [a(x,∇u(x))] is more general than the p(·)-
Laplacian ∆p(x)u(x) = div [|∇u(x)|p(x)−2∇u(x)] and the mean curvature op-

erator div [(1 + |∇u(x)|2)(p(x)−2)/2∇u(x)]. These generalities bring about dif-
ficulties and requires some conditions.

We impose the mixed boundary conditions, that is, the Dirichlet condition
on Γ1 and the Steklov condition on Γ2. The given data f : Ω × R → R and
g : Γ2 × R→ R are Carathéodory functions satisfying some conditions.

The study of differential equations with p(·)-growth conditions is a very
interesting topic recently. Studying such problem stimulated its application
in mathematical physics, in particular, in elastic mechanics (Zhikov [40]), in
electrorheological fluids (Diening [16], Halsey [25], Mihăilescu and Rădulescu
[30], Růz̆ic̆ka [33]).

Over the last two decades, when M(t) ≡ 1, there are many articles on the
existence of weak solutions for the Dirichlet boundary condition, that is, in the
case Γ2 = ∅ in (1.1), (for example, see Mashiyev et al. [29], Duc and Vu [17],
Wei and Chen [34], Yücedaĝ [38], Nápoli and Mariani [31]).

The Kirchhoff-type equation has been considered by many authors. The
original Kirchhoff equation introduced by Kirchhoff [27] is as follows.

ρ
∂2u

∂s2
−

(
ρ0

h
+

E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2u

∂x2
= 0,

where s denotes the time, ρ is the mass density, ρ0 is the initial tension, h is
the area of the cross section, E is the Young modulus of the material and L
is the length of the string. Such type of system is an extension of the classical
D’Alambert wave equation, by considering the effects of the changes in the
length of the string during the vibration. For some interesting results, see
Arosio and Pannizi [10], Cavalcante et al. [11], Corrêa and Figueiredo [13],
D’Ancona and Spagnolo [15], and He and Zou [26].

The stationary analogue of the Kirchhoff equation with the Dirichlet bound-
ary condition takes the form −

(
a+ b

∫
Ω

|∇u|2dx
)

∆u = f(x, u) in Ω,

u = 0 on Γ,

where a and b are positive constants.
Since we can only find a few of papers associate with the problem with the

mixed boundary condition in variable exponent Sobolev space as in (1.1). See
Aramaki [2, 5]. We are convinced of the reason for existence of this paper.
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Dai and Hao [14] considered the problem (1.1) when A(x, ξ) = 1
p(x) |ξ|

p(x)

and Γ2 = ∅, and derived the existence of a nontrivial weak solution to (1.1).
This paper is an extension of the article [14] to the case of mixed boundary
value problem and of a class of operators containing the p(·)-Laplacian and the
mean curvature operator. In Aramaki [4] the author treated the case where
A(x, ξ) is uniformly convex, which is different from the condition of this paper.
In this paper, we give up this condition, however we assume that a(x, ξ) is
uniformly monotone in the more natural sense. For example, in the papers [29]
and [38], they considered p(·)-Laplacian in only the case p(x) ≥ 2 in Ω.

The purpose of the paper is that we treat not only p(·)-Laplacian, but also
the mean curvature operator in the case p(x) > 1 in Ω. To overcome this,
we are saved by the grace of Proposition 3.7 later which is firstly derived by
the author Aramaki [8, Proposition 3.5]. Thanks to this proposition, we can
handle not only the case p(x) ≥ 2 but also the case p(x) > 1. We derive that
there exist one, two and infinitely many nontrivial weak solutions. We use
the standard Mountain-Pass Theorem, Ekeland variational principle and the
Symmetric Mountain-Pass Theorem, respectively.

The paper is organized as follows. In Section 2, we recall some well-known
results on variable exponent Lebesgue-Sobolev spaces. In Section 3, we give the
assumptions to the main theorems (Theorem 4.3, 4.5 and 4.6). In Section 4,
we state the main theorems on the existence of at least one, two and infinitely
many nontrivial weak solutions according to the hypotheses on given functions
f and g. The proofs of these main theorems are given in Section 5.

2 Preliminaries

Throughout this paper, let Ω be a bounded domain in RN (N ≥ 2) with a
C0,1-boundary Γ and Ω is locally on the same side of Γ. Moreover, we assume
that Γ satisfies (1.2).

In the present paper, we only consider vector spaces of real valued func-
tions over R. For any space B, we denote BN by the boldface character B.
Hereafter, we use this character to denote vectors and vector-valued functions,
and we denote the standard inner product of vectors a = (a1, . . . , aN ) and

b = (b1, . . . , bN ) in RN by a · b =
∑N
i=1 aibi and |a| = (a · a)1/2. Furthermore,

we denote the dual space of B by B∗ and the duality bracket by 〈·, ·〉B∗,B .
We recall some well-known results on variable exponent Lebesgue and Sobolev

spaces. See Fan and Zhang [21], Kovác̆ik and Rácosńık [28] and references
therein for more detail. Furthermore, we consider some new properties on vari-
able exponent Lebesgue space. Define C(Ω) = {p; p is a continuous function on
Ω}, and for any p ∈ C(Ω), put

p+ = p+(Ω) = sup
x∈Ω

p(x) and p− = p−(Ω) = inf
x∈Ω

p(x).
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For any p ∈ C(Ω) with p− ≥ 1 and for any measurable function u on Ω, a
modular ρp(·) = ρp(·),Ω is defined by

ρp(·)(u) =

∫
Ω

|u(x)|p(x)dx.

The variable exponent Lebesgue space is defined by

Lp(·)(Ω) = {u;u : Ω→ R is a measurable function satisfying ρp(·)(u) <∞}

equipped with the (Luxemburg) norm

‖u‖Lp(·)(Ω) = inf
{
λ > 0; ρp(·)

(u
λ

)
≤ 1
}
.

Then Lp(·)(Ω) is a Banach space. We also define a Sobolev space

W 1,p(·)(Ω) = {u ∈ Lp(·)(Ω); |∇u| ∈ Lp(·)(Ω)},

where ∇u is the gradient of u, that is, ∇u = (∂1u, . . . , ∂Nu), ∂i = ∂/∂xi,
endowed with the norm

‖u‖W 1,p(·)(Ω) = ‖u‖Lp(·)(Ω) + ‖|∇u|‖Lp(·)(Ω).

The following three propositions are well known (see Fan et al. [22], Fan
and Zhao [23], Zhao et al. [39]).

Proposition 2.1. Let p ∈ C(Ω) with p− ≥ 1, and let u, un ∈ Lp(·)(Ω) (n =
1, 2, . . .). Then we have the following properties.

(i) ‖u‖Lp(·)(Ω) < 1(= 1, > 1)⇐⇒ ρp(·)(u) < 1(= 1, > 1).

(ii) ‖u‖Lp(·)(Ω) > 1 =⇒ ‖u‖p
−

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ‖u‖p

+

Lp(·)(Ω)
.

(iii) ‖u‖Lp(·)(Ω) < 1 =⇒ ‖u‖p
+

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ‖u‖p

−

Lp(·)(Ω)
.

(iv) limn→∞ ‖un − u‖Lp(·)(Ω) = 0⇐⇒ limn→∞ ρp(·)(un − u) = 0.
(v) ‖un‖Lp(·)(Ω) →∞ as n→∞⇐⇒ ρp(·)(un)→∞ as n→∞.

The following proposition is a generalized Hölder inequality.

Proposition 2.2. Let p ∈ C+(Ω), where

C+(Ω) := {p ∈ C(Ω); p− > 1}.

For any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), we have∫
Ω

|u(x)v(x)|dx ≤
(

1

p−
+

1

(p′)−

)
‖u‖Lp(·)(Ω)‖v‖Lp′(·)(Ω) ≤ 2‖u‖Lp(·)(Ω)‖v‖Lp′(·)(Ω).

Here and from now on, for any p ∈ C+(Ω), p′(·) denote the conjugate exponent
of p(·), that is, p′(x) = p(x)/(p(x)− 1).
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For p ∈ C+(Ω), define for x ∈ Ω,

p∗(x) =

{
Np(x)
N−p(x) if p(x) < N,

∞ if p(x) ≥ N.

Proposition 2.3. Let Ω be a bounded domain of RN with C0,1-boundary and
let p ∈ C+(Ω). Then we have the following properties.

(i) The spaces Lp(·)(Ω) and W 1,p(·)(Ω) are separable, reflexive and uniformly
convex Banach spaces.

(ii) If q(x) ∈ C(Ω) with q− ≥ 1 satisfies that q(x) ≤ p∗(x) for all x ∈ Ω,
then the embedding W 1,p(·)(Ω) ↪→ Lq(·)(Ω), where ↪→ means that the embedding
is continuous.

(iii) If q(x) ∈ C(Ω) with q− ≥ 1 satisfies that q(x) < p∗(x) for all x ∈ Ω,
then the embedding W 1,p(·)(Ω) ↪→ Lq(·)(Ω) is compact.

Next we consider the trace (cf. Fan [20]). Let Ω be a bounded domain of
RN with a C0,1-boundary Γ and p ∈ C(Ω) with p− ≥ 1. Since W 1,p(·)(Ω) ⊂
W 1,1(Ω), the trace γ(u) = u

∣∣
Γ

to Γ of any function u in W 1,p(·)(Ω) is well

defined as a function in L1(Γ). We define

(TrW 1,p(·))(Γ) = {f ; f is the trace to Γ of a function F ∈W 1,p(·)(Ω)}

equipped with the norm

‖f‖(TrW 1,p(·))(Γ) = inf{‖F‖W 1,p(·)(Ω);F ∈W 1,p(·)(Ω) satisfying F
∣∣
Γ
= f}

for f ∈ (TrW 1,p(·))(Γ), where the infimum can be achieved. Then we can see
that (TrW 1,p(·))(Γ) is a Banach space. In the later we also write F

∣∣
Γ
= g by

F = g on Γ. Moreover, for i = 1, 2, we denote

(TrW 1,p(·))(Γi) = {f
∣∣
Γi

; f ∈ (TrW 1,p(·))(Γ)}

equipped with the norm

‖g‖(TrW 1,p(·))(Γi) = inf{‖f‖(TrW 1,p(·))(Γ); f ∈ (TrW 1,p(·))(Γ) satisfying f
∣∣
Γi

= g},

where the infimum can also be achieved, so for any g ∈ (TrW 1,p(·))(Γi), there
exists F ∈W 1,p(·)(Ω) such that F

∣∣
Γi

= g and ‖F‖W 1,p(·)(Ω) = ‖g‖(TrW 1,p(·))(Γi).

Let q ∈ C+(Γ) := {q ∈ C(Γ); q− > 1} and denote the surface measure on Γ
induced from the Lebesgue measure dx on Ω by dσx. We define

Lq(·)(Γ) =

{
u;u : Γ→ R is a measurable function with respect to dσx

satisfying

∫
Γ

|u(x)|q(x)dσx <∞
}
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and the norm is defined by

‖u‖Lq(·)(Γ) = inf

{
λ > 0;

∫
Γ

∣∣∣∣u(x)

λ

∣∣∣∣q(x)

dσx ≤ 1

}
,

and we also define a modular on Lq(·)(Γ) by

ρq(·),Γ(u) =

∫
Γ

|u(x)|q(x)dσx.

Similarly as Proposition 2.1, we have the following proposition.

Proposition 2.4. Let q ∈ C(Γ) with q− ≥ 1, and let u, un ∈ Lq(·)(Γ). Then
we have the following properties.

(i) ‖u‖Lq(·)(Γ) < 1(= 1, > 1)⇐⇒ ρq(·),Γ(u) < 1(= 1, > 1).

(ii) ‖u‖Lq(·)(Γ) > 1 =⇒ ‖u‖q
−

Lq(·)(Γ)
≤ ρq(·),Γ(u) ≤ ‖u‖q

+

Lq(·)(Γ)
.

(iii) ‖u‖Lq(·)(Γ) < 1 =⇒ ‖u‖q
+

Lq(·)(Γ)
≤ ρq(·),Γ(u) ≤ ‖u‖q

−

Lq(·)(Γ)
.

(iv) ‖un‖Lq(·)(Γ) → 0⇐⇒ ρq(·),Γ(un)→ 0.
(v) ‖un‖Lq(·)(Γ) →∞⇐⇒ ρq(·),Γ(un)→∞.

The Hölder inequality also holds for functions on Γ.

Proposition 2.5. Let q ∈ C(Γ) with q− > 1. Then the following inequality
holds.∫

Γ

|f(x)g(x)|dσx ≤ 2‖f‖Lq(·)(Γ)‖g‖Lq′(·)(Γ) for all f ∈ Lq(·)(Γ), g ∈ Lq
′(·)(Γ).

Proposition 2.6. Let Ω be a bounded domain of RN with a C0,1-boundary Γ
and let p ∈ C+(Ω). If f ∈ (TrW 1,p(·))(Γ), then f ∈ Lp(·)(Γ) and there exists a
constant C > 0 such that

‖f‖Lp(·)(Γ) ≤ C‖f‖(TrW 1,p(·))(Γ).

In particular, If f ∈ (TrW 1,p(·))(Γ), then f ∈ Lp(·)(Γi) and ‖f‖Lp(·)(Γi) ≤
C‖f‖(TrW 1,p(·))(Γ) for i = 1, 2.

For p ∈ C+(Ω), define for x ∈ Ω,

p∂(x) =

{
(N−1)p(x)
N−p(x) if p(x) < N,

∞ if p(x) ≥ N.

The following proposition follows from Yao [37, Proposition 2.6].
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Proposition 2.7. Let p ∈ C+(Ω). Then if q ∈ C+(Γ) satisfies q(x) ≤ p∂(x)
for all x ∈ Γ, then the trace mapping W 1,p(·)(Ω)→ Lq(·)(Γ) is well-defined and
continuous and

‖u‖Lq(·)(Γ) ≤ C‖u‖W 1,p(·)(Ω) for u ∈W 1,p(·)(Ω)

for some constant C > 0.

In particular, if q(x) < p∂(x) for all x ∈ Γ2, then the trace mapping
W 1,p(·)(Ω)→ Lq(·)(Γ) is compact.

Now we consider the weighted variable exponent Lebesgue space. Let p ∈
C(Ω) with p− ≥ 1 and let a(x) be a measurable function on Ω with a(x) > 0
a.e. x ∈ Ω. We define a modular

ρ(p(·),a(·))(u) =

∫
Ω

a(x)|u(x)|p(x)dx for any measurable function u in Ω.

Then the weighted Lebesgue space is defined by

L
p(·)
a(·)(Ω) =

{
u;u is a measurable function on Ω satisfying ρ(p(·),a(·))(u) <∞

}
equipped with the norm

‖u‖
L
p(·)
a(·)(Ω)

= inf

{
λ > 0;

∫
Ω

a(x)

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
.

Then L
p(·)
a(·)(Ω) is a Banach space.

We have the following proposition (cf. Fan [19, Proposition 2.5]).

Proposition 2.8. Let p ∈ C(Ω) with p− ≥ 1. For u, un ∈ Lp(·)a(·)(Ω), we have

the following.

(i) For u 6= 0, ‖u‖
L
p(·)
a(·)(Ω)

= λ⇐⇒ ρ(p(·),a(·))
(
u
λ

)
= 1.

(ii) ‖u‖
L
p(·)
a(·)(Ω)

< 1(= 1, > 1)⇐⇒ ρ(p(·),a(·))(u) < 1(= 1, > 1).

(iii) ‖u‖
L
p(·)
a(·)(Ω)

> 1 =⇒ ‖u‖p
−

L
p(·)
a(·)(Ω)

≤ ρ(p(·),a(·))(u) ≤ ‖u‖p
+

L
p(·)
a(·)(Ω)

.

(iv) ‖u‖
L
p(·)
a(·)(Ω)

< 1 =⇒ ‖u‖p
+

L
p(·)
a(·)(Ω)

≤ ρ(p(·),a(·))(u) ≤ ‖u‖p
−

L
p(·)
a(·)(Ω)

.

(v) limn→∞ ‖un − u‖Lp(·)
a(·)(Ω)

= 0⇐⇒ limn→∞ ρ(p(·),a(·))(un − u) = 0.

(vi) ‖un‖Lp(·)
a(·)(Ω)

→∞ as n→∞⇐⇒ ρ(p(·),a(·))(un)→∞ as n→∞.

The author of [19] also derived the following proposition (cf. [19, Theorem
2.1]).
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Proposition 2.9. Let Ω be a bounded domain of RN with a C0,1-boundary
and p ∈ C+(Ω). Moreover, let a ∈ Lα(·)(Ω) satisfy a(x) > 0 a.e. x ∈ Ω and
α ∈ C+(Ω). If q ∈ C(Ω) satisfies

1 ≤ q(x) <
α(x)− 1

α(x)
p∗(x) for all x ∈ Ω,

then the embedding W 1,p(·)(Ω) ↪→ L
q(·)
a(·)(Ω) is compact.

Similarly, let q ∈ C(Γ) with q− ≥ 1 and let b(x) be a measurable function
with respect to σ on Γ with b(x) > 0 σ-a.e. x ∈ Γ. We define a modular

ρ(q(·),b(·)),Γ(u) =

∫
Γ

b(x)|u(x)|q(x)dσx.

Then the weighted Lebesgue space on Γ is defined by

L
q(·)
b(·)(Γ) = {u;u is a σ-measurable function on Γ satisfying ρ(q(·),b(·)),Γ(u) <∞}

equipped with the norm

‖u‖
L
q(·)
b(·)(Γ)

= inf

{
λ > 0;

∫
Γ

b(x)

∣∣∣∣u(x)

λ

∣∣∣∣q(x)

dσx ≤ 1

}
.

Then L
q(·)
b(·)(Γ) is a Banach space.

Then we have the following proposition.

Proposition 2.10. Let q ∈ C(Γ) with q− ≥ 1. For u, un ∈ Lq(·)b(·)(Γ), we have

the following.
(i) ‖u‖

L
q(·)
b(·)(Γ)

< 1(= 1, > 1)⇐⇒ ρ(q(·),b(·)),Γ(u) < 1(= 1, > 1).

(ii) ‖u‖
L
q(·)
b(·)(Γ)

> 1 =⇒ ‖u‖q
−

L
q(·)
b(·)(Γ)

≤ ρ(q(·),b(·)),Γ(u) ≤ ‖u‖q
+

L
q(·)
b(·)(Ω)

.

(iii) ‖u‖
L
q(·)
b(·)(Γ)

< 1 =⇒ ‖u‖q
+

L
q(·)
b(·)(Γ)

≤ ρ(q(·),b(·)),Γ(u) ≤ ‖u‖q
−

L
q(·)
b(·)(Γ)

.

(iv) limn→∞ ‖un − u‖Lq(·)
b(·)(Γ)

= 0⇐⇒ limn→∞ ρ(q(·),b(·)),Γ(un − u) = 0.

(v) ‖un‖Lq(·)
b(·)(Γ)

→∞ as n→∞⇐⇒ ρ(q(·),b(·)),Γ(un)→∞ as n→∞.

The following proposition plays an important role in the present paper.

Proposition 2.11. Let Ω be a bounded domain of RN with a C0,1-boundary
Γ and let p ∈ C+(Ω). Assume that 0 < b ∈ Lβ(·)(Γ), β ∈ C+(Γ). If r ∈ C(Γ)
satisfies

1 ≤ r(x) <
β(x)− 1

β(x)
p∂(x) for all x ∈ Γ,

then the embedding W 1,p(·)(Ω) ↪→ L
r(·)
b(·)(Γ) is compact.
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For the proof, see Aramaki [6, Proposition 2.11].
Define a space by

X = {v ∈W 1,p(·)(Ω); v = 0 on Γ1}. (2.1)

Then it is clear to see that X is a closed subspace of W 1,p(·)(Ω), so X is
a reflexive and separable Banach space. We get the following Poincaré-type
inequality (cf. Ciarlet and Dinca [12]).

Proposition 2.12. Let Ω be a bounded domain of RN with a C0,1-boundary
and let p ∈ C+(Ω). Then there exists a constant C = C(Ω, N, p) > 0 such that

‖u‖Lp(·)(Ω) ≤ C‖∇u‖Lp(·)(Ω) for all u ∈ X.

In particular, ‖∇u‖Lp(·)(Ω) is equivalent to ‖u‖W 1,p(·)(Ω) for u ∈ X.

For the direct proof, see Aramaki [1, Lemma 2.5].
Thus we can define the norm on X so that

‖v‖X = ‖∇v‖Lp(·)(Ω) for v ∈ X, (2.2)

which is equivalent to ‖v‖W 1,p(·)(Ω) from Proposition 2.12.

3 Assumptions to the main theorems

In this section, we state the assumptions to the main theorems. Let p ∈ C+(Ω)
be fixed.

(A.0) Let A : Ω × RN → R be a function satisfying that for a.e. x ∈ Ω,
the function A(x, ·) : RN 3 ξ 7→ A(x, ξ) is of C1-class, and for all ξ ∈ RN ,
the function A(·, ξ) : Ω 3 x 7→ A(x, ξ) is measurable. Moreover, suppose that
A(x,0) = 0 and put a(x, ξ) = ∇ξA(x, ξ). Then a(x, ξ) is a Carathéodory
function on Ω× RN .

Assume that there exist constants C0, k0 > 0 and nonnegative functions
h0 ∈ Lp

′(·)(Ω) and h1 ∈ L1(Ω) with h1(x) ≥ 1 for a.e. x ∈ Ω such that the
following conditions hold.

(A.1) |a(x, ξ)| ≤ C0(h0(x) + h1(x)|ξ|p(x)−1) for all ξ ∈ RN and a.e. x ∈ Ω.
(A.2) a(x,0) = 0 for a.e. x ∈ Ω and

(a(x, ξ)−a(x,η))·(ξ−η) ≥
{
k0h1(x)|ξ − η|p(x) if p(x) ≥ 2,
k0h1(x)(1 + |ξ|+ |η|)p(x)−2|ξ − η|2 if p(x) < 2

for a.e. x ∈ Ω and all ξ,η ∈ RN .
(A3) A is p(·)-subhomogeneous in the sence of

a(x, ξ) · ξ ≤ p(x)A(x, ξ) + h1(x) for all ξ ∈ RN and a.e. x ∈ Ω.
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Example 3.1. Let p ∈ C+(Ω).

(i) A(x, ξ) = h(x)
p(x) |ξ|

p(x) and h ∈ L1(Ω) satisfying h(x) ≥ 1 for a.e. x ∈ Ω.

(ii) A(x, ξ) = h(x)
p(x) ((1 + |ξ|2)p(x)/2−1) and h ∈ Lp′(·)(Ω) satisfying h(x) ≥ 1

for a.e. x ∈ Ω.

Then A(x, ξ) and a(x, ξ) = ∇ξA(x, ξ) satisfy (A.0)-(A.3).

Remark 3.2. (i) When h(x) ≡ 1, (i) corresponds to the p(·)-Laplacian and
(ii) corresponds to the prescribed mean curvature operator for nonparametric
surface.

(ii) In many papers (for example, [38], [29], Aramaki [3, 6]), the authors
assume that a(x, ξ) · ξ ≤ p(x)A(x, ξ) instead of (A.3). However, in the above
Example 3.1 we see that if the example (ii) satisfies 1 < p(x) < 2 in a subset
of Ω with positive measure, then we have to assume (A.3).

Lemma 3.3. Under (A.0) and (A.2), we have the following.

(i) We have

A(x, ξ) ≥
{ 1

p+ k0h1(x)|ξ|p(x) if p(x) ≥ 2
1
2k0h1(x)(1 + |ξ|)p(x)−2|ξ|2 if p(x) < 2.

for a.e. x ∈ Ω and all ξ ∈ RN .

(ii) There exists a constant c > 0 such that

1

2
A(x, ξ) +

1

2
A(x,η)−A

(
x,
ξ + η

2

)
≥
{
c h1(x)|ξ − η|p(x) if p(x) ≥ 2,
c h1(x)(1 + |ξ|+ |η|)p(x)−2|ξ − η|2 if p(x) < 2

for a.e. x ∈ Ω and all ξ,η ∈ RN .

In particular, A(x, ξ) is convex with respect to ξ.

Proof. (i) It follows from (A.0) and (A.2) that

A(x, ξ) = A(x, ξ)−A(x,0) =

∫ 1

0

1

dt
A(x, tξ)dt =

∫ 1

0

1

t
a(x, tξ) · tξdt

≥

{
k0h1(x)

∫ 1

0
tp(x)−1|ξ|p(x)dt if p(x) ≥ 2

k0h1(x)
∫ 1

0
(1 + t|ξ|)p(x)−2t|ξ|2dt if p(x) < 2.

≥
{ 1

p(x)k0h1(x)|ξ|p(x) if p(x) ≥ 2
1
2k0h1(x)(1 + |ξ|)p(x)−2|ξ|2 if p(x) < 2.

For the proof of (ii), see Aramaki[7, Lemma 3.1].
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Lemma 3.4. Under (A.0)-(A.2), we have the following.
(i) |A(x, ξ)| ≤ C0(h0(x)|ξ|+ h1(x)|ξ|p(x)) for a.e. x ∈ Ω and all ξ ∈ RN .
(ii) There exist constants c > 0 and C ≥ 0 such that

a(x, ξ) · ξ ≥ ch1(x)|ξ|p(x) − Ch1(x) for a.e. x ∈ Ω and all ξ ∈ RN .

In particular, if p− ≥ 2, then we can take C = 0.

For the proof, see [7, Lemma 3.4].
For the function h1 ∈ L1(Ω) with h1(x) ≥ 1 for a.e. x ∈ Ω, we define a

modular

ρp(·),h1(·)(v) = ρp(·),h1(·),Ω(v) =

∫
Ω

h1(x)|∇v(x)|p(x)dx for v ∈ Y,

where Y is our basic space defined by

Y = {v ∈ X; ρp(·),h1(·)(v) <∞} (3.1)

equipped with the norm

‖v‖Y = inf
{
λ > 0; ρp(·),h1(·)

( v
λ

)
≤ 1
}
.

Then Y is a Banach space (see Proposition 3.6 below). We note that C∞0 (Ω) ⊂
Y . Since

ρp(·),h1(·)(v) = ρp(·)(h
1/p(·)
1 ∇v),

we have
‖v‖Y = ‖h1/p(·)

1 ∇v‖Lp(·)(Ω). (3.2)

Then we have the following lemma.

Lemma 3.5. (i) Y ↪→ X and ‖v‖X ≤ ‖v‖Y for all v ∈ Y .
(ii) Let v ∈ Y . Then ‖v‖Y > 1(= 1, < 1)⇐⇒ ρp(·),h1(·)(v) > 1(= 1, < 1).

(iii) Let v ∈ Y . Then ‖v‖Y > 1 =⇒ ‖v‖p
−

Y ≤ ρp(·),h1(·)(v) ≤ ‖v‖p
+

Y .

(iv) Let v ∈ Y . Then ‖v‖Y < 1 =⇒ ‖v‖p
+

Y ≤ ρp(·),h1(·)(v) ≤ ‖v‖p
−

Y .
(v) Let un, u ∈ Y . Then limn→∞ ‖un−u‖Y = 0⇐⇒ limn→∞ ρp(·),h1(·)(un−

u) = 0.
(vi) Let un ∈ Y . Then ‖un‖Y → ∞ as n → ∞ ⇐⇒ ρp(·),h1(·)(un) →

∞ as n→∞.

Proposition 3.6. The space (Y, ‖ · ‖Y ) is a separable and reflexive Banach
space.

For the proof, see [3, Lemma 2.12].
The following proposition fulfills an important role in this paper. Put Ω1 =

{x ∈ Ω; p(x) ≥ 2}, Ω2 = {x ∈ Ω; p(x) < 2}.
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Proposition 3.7. Under (A.0)-(A.2), there exist positive constants c and C
such that∫

Ω

(a(x,∇u(x))− a(x,∇v(x))) · (∇u(x)−∇v(x))dx ≥ cρp(·),h1(·),Ω1
(u− v)

+
{
c(C + ‖u‖Y + ‖v‖Y )(p−(Ω2)−2)p−(Ω2)/2ρp(·),h1(·),Ω2

(u− v)
}2/p+(Ω2)

∧
{
c(C + ‖u‖Y + ‖v‖Y )(p−(Ω2)−2)p−(Ω2)/2ρp(·),h1(·),Ω2

(u− v)
}2/p−(Ω2)

for u, v ∈ Y . Here and from now on, we denote a ∨ b = max{a, b} and a ∧ b =
min{a, b} for real numbers a and b.

In particular, if v = 0 and ‖u‖Y < 1, then we have∫
Ω

a(x,∇u(x)) ·∇u(x)dx ≥ c1(ρp(·),h1(·),Ω1
(u) + ρp(·),h1(·),Ω2

(u)2/p−(Ω2))

≥ c2‖u‖2p
+/p−

Y

for some positive constants c1 and c2.
We also get the following estimate.∫

Ω

a(x,∇u(x)) ·∇u(x)dx ≥ c‖u‖p
+

Y ∧‖u‖
p−

Y −C‖h1‖L1(Ω) for all u ∈ Y (3.3)

for some constants c > 0 and C ≥ 0.

For the proof, see Aramaki [7, Proposition 3.7] (cf. [8, Proposition 3.5]).

Remark 3.8. (i) This proposition is firstly derived by the author [8], using a
version of the idea of Glowinski and Marroco [24] who treated the case p(x) =
p = const..

(ii) Using Lemma 3.3 (i), we also get an estimate that there exists a constant
c > 0 such that∫

Ω

A(x,∇u(x))dx ≥ c‖u‖2p
+/p−

Y for u ∈ Y with ‖u‖Y < 1.

Throughout this paper, we consider the most general case where |Ω1| > 0
and |Ω2| > 0, where |A| denotes the volume of any measurable set A.

Next we state the assumptions of the function M = M(t) in (1.1).
(M.0) M = M(t) is a continuous and monotone non-decreasing function on

[0,∞).
(M.1) There exist constants m0,m1 > 0 and k ≥ l ≥ 1 such that

m0t
l−1 ≤M(t) ≤ m1(1 + tk−1) for t ≥ 0.
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(M.2) There exists µ ∈ (0, 1) such that M̂(t) ≥ (1 − µ)M(t)t for t ≥ 0,
where

M̂(t) =

∫ t

0

M(s)ds. (3.4)

We note that M̂ ∈ C1((0,∞)) ∩C([0,∞)), M̂ is convex, strictly monotone
increasing and

m0

l
tl ≤ M̂(t) ≤ m1

(
t+

1

k
tk
)

for t ≥ 0. (3.5)

We continue to state the assumptions of f and g in (1.1).
(f.1) f = f(x, t) is a real Carathéodory function on Ω × R and there exist

1 ≤ a ∈ Lα(·)(Ω) with α ∈ C+(Ω) and q ∈ C+(Ω) with

q(x) <
α(x)− 1

α(x)
p∗(x) for all x ∈ Ω

such that |f(x, t)| ≤ C1(1 + a(x)|t|q(x)−1) for all t ∈ R and a.e. x ∈ Ω, where
C1 is a positive constant and 2lp+/p− < q−.

(f.2) There exist θ > (p+/(1− µ)) ∨ 2kp+/p− and t0 > 0 such that

0 < θF (x, t) ≤ f(x, t)t for all t ∈ R \ (−t0, t0) and a.e. x ∈ Ω,

where

F (x, t) =

∫ t

0

f(x, s)ds. (3.6)

(f.3) f(x, t) = o(|t|2lp+/p−−1) uniformly in x as t→ 0.
(g.1) g = g(x, t) is a real Carathéodory function on Γ2 × R and there exist

1 ≤ b ∈ Lβ(·)(Γ2) with β ∈ C+(Γ2) and r ∈ C+(Γ2) with

r(x) <
β(x)− 1

β(x)
p∂(x) for all x ∈ Γ2

such that |g(x, t)| ≤ C2(1 + b(x)|t|r(x)−1) for all t ∈ R and σ-a.e. x ∈ Γ2, where
C2 is a positive constant and 2lp+/p− < r−.

(g.2) Let θ and t0 be as in (f.2). That is, there exist θ > (p+/(1 − µ)) ∨
2kp+/p− and t0 > 0 such that

0 < θG(x, t) ≤ g(x, t)t for all t ∈ R \ (−t0, t0) and σ-a.e. x ∈ Γ2,

where

G(x, t) =

∫ t

0

g(x, s)ds. (3.7)

(g.3) g(x, t) = o(|t|2lp+/p−−1) uniformly in x as t→ 0.
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Lemma 3.9. Under (f.1)-(f.3) and (g.1)-(g.3), we have the following.
(i) For any λ > 0, there exists a constant C ′1 > 0 such that

|F (x, t)| ≤ λ p−

2lp+
|t|2lp

+/p− + C ′1a(x)|t|q(x) for a.e. x ∈ Ω, t ∈ R.

(ii) For any λ > 0, there exists a constant C ′2 > 0 such that

|G(x, t)| ≤ λ p−

2lp+
|t|2lp

+/p− + C ′2b(x)|t|r(x) for σ-a.e. x ∈ Γ2, t ∈ R.

Proof. From (f.3), for any λ > 0, there exists δ ∈ (0, 1) such that

|f(x, t)| ≤ λ|t|2lp
+/p−−1 for a.e. x ∈ Ω, t ∈ (−δ, δ).

Hence we have

|F (x, t)| ≤ λ p−

2lp+
|t|2lp

+/p− for a.e. x ∈ Ω, t ∈ (−δ, δ).

On the other hand, from (f.1), we have

|F (x, t)| ≤ C1(|t|+ a(x)

q(x)
|t|q(x)) ≤ C ′1a(x)|t|q(x) for a.e. x ∈ Ω, |t| ≥ δ.

Hence (i) follows. Similarly (ii) holds.

Define a functional on Y by

I(u) = Ψ(u)− J(u)−K(u), Ψ(u) = M̂(Φ(u)) for u ∈ Y, (3.8)

where

Φ(u) =

∫
Ω

A(x,∇u(x))dx, (3.9)

J(u) =

∫
Ω

F (x, u(x))dx, F (x, t) is defined by (3.6), (3.10)

K(u) =

∫
Γ2

G(x, u(x))dσx, G(x, t) is defined by (3.7). (3.11)

Proposition 3.10. Assume that (M.0)-(M.2), (A.0)-(A.3), (f.1) and (g.1)
hold. Then we have the following.

(i) The functionals J and K are sequentially weakly continuous in Y , that
is, if un → u weakly in Y as n→∞, then J(un)→ J(u) and K(un)→ K(u)
as n→∞.

(ii) The functional Ψ is sequentially weakly lower semi-continuous in Y ,
that is, if un → u weakly in Y as n→∞, then Ψ(u) ≤ lim infn→∞Ψ(un).
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Proof. By [3, Proposition 4.4], J and K are sequentially weakly continuous in
Y and Φ is sequentially weakly lower semi-continuous in Y . We show that Ψ
is sequentially weakly lower semi-continuous in Y . Let un → u weakly in Y as
n→∞. Then

Φ(u) ≤ lim inf
n→∞

Φ(un) = lim
N→∞

inf
n≥N

Φ(un).

Since M̂ is monotone non-decreasing, we have M̂ (infn≥N Φ(un)) ≤ M̂(Φ(un))

for any n ≥ N . Thus we have M̂ (infn≥N Φ(un)) ≤ infn≥N M̂(Φ(un)). Since

M̂ is also continuous, we see that

Ψ(u) = M̂(Φ(u)) ≤ M̂
(

lim
N→∞

inf
n≥N

Φ(un)

)
= lim
N→∞

M̂

(
inf
n≥N

Φ(un)

)
≤ lim inf

n→∞
M̂(Φ(un)) = lim inf

n→∞
Ψ(un).

This completes the proof.

Proposition 3.11. Assume that (M.0)-(M.2), (A.0)-(A.3), (f.1) and (g.1)
hold. Then we have the following.

(i) The functionals Ψ, J,K ∈ C1(Y,R) and the Fréchet derivatives Ψ′, J ′

and K ′ satisfy the following equalities.

〈Ψ′(u), v〉 = M(Φ(u))〈Φ′(u), v〉 = M(Φ(u))

∫
Ω

a(x,∇u(x)) ·∇v(x)dx,

〈J ′(u), v〉 =

∫
Ω

f(x, u(x))v(x)dx,

〈K ′(u), v〉 =

∫
Γ2

g(x, u(x))v(x)dσx

for all u, v ∈ Y . Here and hereafter, we write the duality 〈·, ·〉Y ∗,Y by simply
〈·, ·〉.

(ii) The functional Φ is coercive, that is, lim‖u‖Y→∞Φ(u) =∞.
(iii) The functional Φ is bounded on every bounded subset of Y .
(iv) The operator Φ′ : Y → Y ∗ is coercive, that is,

lim
‖u‖Y→∞

〈Φ′(u), u〉
‖u‖Y

=∞.

(v) Φ′ is bounded on every bounded subset of Y .

For the proof, see Aramaki [9, Proposition 3.8, 3.10 and 3.11].

Lemma 3.12. Under (f.1)-(f.3) and (g.1)-(g.3), there exist constants c1, c2,
C3 and C4 such that for u ∈ Y with ‖u‖Y < 1, the following inequalities hold.
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(i) We have

J(u) ≤ λ p−

2lp+
c1‖u‖2lp

+/p−

Y + C3‖u‖q
−

Y ,

where C is the constant of (3.3).
(ii) We have

K(u) ≤ λ p−

2lp+
c2‖u‖2lp

+/p−

Y + C4‖u‖r
−

Y .

Proof. From Lemma 3.9 (i),

J(u) ≤ λ p−

2lp+

∫
Ω

|u(x)|2lp
+/p−dx+ C3

∫
Ω

a(x)|u(x)|q(x)dx.

Here it suffices to note that since 2lp+/p− < q− < p∗(x) for all x ∈ Ω, we have∫
Ω

|u(x)|2lp
+/p−dx ≤ C‖u‖2lp

+/p−

Y

with some constant C > 0, and∫
Ω

a(x)|u(x)|q(x)dx ≤ C ′‖u‖q
−

Y .

(ii) follows from the similar arguments as (i).

Proposition 3.13. Assume that (M.0)-(M.2), (A.0)-(A.3), (f.1)-(f.3) and
(g.1)-(g.3) hold. Then for any λ > 0, there exist constants c, c1, c2 > 0 and
C ′1, C

′
2 > 0 such that for u ∈ Y with ‖u‖Y < 1 and any λ > 0,

I(u) ≥
(
cm0

l
− λp

−c1
2lp+

− λp
−c2

2lp+

)
‖u‖2lp

+/p−

Y − C ′1‖u‖
q−

Y − C
′
2‖u‖r

−

Y .

In particular, there exists ρ ∈ (0, 1) such that

inf
‖u‖Y =ρ

I(u) > 0. (3.12)

Proof. Let u ∈ Y with ‖u‖Y < 1. It follows from (3.4), (3.5), (A.2) and
Proposition 3.7 with v = 0 and ‖u‖Y < 1 (cf. Remark 3.8 (ii)) that

Ψ(u) ≥ m0

l

(∫
Ω

A(x,∇u(x))dx

)l
≥ cm0

l
‖u‖2lp

+/p−

Y .

From Lemma 3.12,

I(u) =Ψ(u)−J(u)−K(u)≥
(
cm0

l
−λp

−c1
2lp+

− λp
−c2

2lp+

)
‖u‖2lp

+/p−

Y −C3‖u‖q
−

Y−C4‖u‖r
−

Y .
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If we choose λ > 0 small enough so that c′′ := cm0

l − λ
p−c1
2lp+ − λ

p−c2
2lp+ > 0, then

we have

I(u) ≥ ‖u‖2lp
+/p−

Y (c′′ − C3‖u‖q
−−2lp+/p−

Y − C4‖u‖r
−−2lp+/p−

Y ).

Since q− > 2lp+/p− and r− > 2lp+/p−, if ‖u‖Y = ρ > 0 is small, then we have
inf‖u‖Y =ρ I(u) > 0.

Proposition 3.14. Assume that (M.0)-(M.2), (A.0)-(A.3), (f.1)-(f.3) and
(g.1)-(g.3) hold. Then there exists a constant C5 > 0 such that

I(u)− 1

θ
〈I ′(u), u〉 ≥ m0c

(
1− µ
p+

− 1

θ

)
‖u‖p

−

Y − C5 for all u ∈ Y.

Proof. From (M.2), (A.3) and Lemma 3.4 (ii), for u ∈ Y , we have

Ψ(u)− 1

θ
〈Ψ′(u), u〉

= M̂(Φ(u))− 1

θ
M(Φ(u))〈Φ′(u), u〉

≥ (1− µ)M(Φ(u))Φ(u)− 1

θ
M(Φ(u))〈Φ′(u), u〉

≥M(Φ(u))

(
(1− µ)

∫
Ω

A(x,∇u(x))dx− 1

θ

∫
Ω

a(x,∇u(x)) ·∇u(x)dx

)
≥M(Φ(u))

(∫
Ω

(
1− µ
p(x)

− 1

θ

)
a(x,∇u(x)) ·∇u(x)dx− (1− µ)‖h1/p‖L1(Ω)

)
≥M(Φ(u))

((
1− µ
p+

− 1

θ

)
〈Φ′(u), u〉 − (1− µ)‖h1/p‖L1(Ω)

)
.

Since Φ′ is coercive from Proposition 3.11 (iv) and θ > p+/(1 − µ), there
exists a large enough M > 1 such that if ‖u‖Y ≥ M , then Φ(u) ≥ 1 and
((1 − µ)/p+ − 1/θ)〈Φ′(u), u〉 − ‖h1/p‖L1(Ω) ≥ 0 since Φ and Φ′ are coercive.
Hence using Lemma 3.4 (ii),

Ψ(u)− 1

θ
〈Ψ′(u), u〉 ≥ m0Φ(u)l−1

((
1− µ
p+

− 1

θ

)
〈Φ′(u), u〉 − ‖h1/p‖L1(Ω)

)
≥ m0

((
1− µ
p+

− 1

θ

)
(c‖u‖p

−

Y − C‖h1/p‖L1(Ω))− ‖h1/p‖L1(Ω)

)
≥ m0c

(
1− µ
p+

− 1

θ

)
‖u‖p

−

Y −m0(C + 1)‖h1/p‖L1(Ω).

When ‖u‖Y ≤M , since M̃,M,Φ and Φ′ is bounded on every bounded subset of
Y from Proposition 3.11, Ψ and Ψ′ are also bounded on every bounded subset



18 Existence of weak solutions for the Kirchhoff-type equation with...

of Y . Thus we have ∣∣∣∣Ψ(u)− 1− µ
θ
〈Ψ′(u), u〉

∣∣∣∣ ≤ C ′.
Hence for ‖u‖Y ≤M , we have

Ψ(u)− 1

θ
〈Ψ′(u), u〉 ≥ −C ′ ≥ m0c

(
1− µ
p+

− 1

θ

)
‖u‖p

−

Y − C
′′.

Therefore, we have

Ψ(u)− 1

θ
〈Ψ′(u), u〉 ≥ m0c

(
1− µ
p+

− 1

θ

)
‖u‖p

−

Y − C
′′
5

for u ∈ Y .
On the other hand, it follows from (f.2) that

0 < θF (x, t) ≤ f(x, t)t for a.e. x ∈ Ω, t ∈ R \ (−t0, t0).

Put Ωu = {x ∈ Ω; |u(x)| > t0}. Then 1
θf(x, u(x))u(x)− F (x, u(x)) ≥ 0 for a.e.

x ∈ Ωu. For x ∈ Ω \ Ωu, we have∣∣∣∣1θ f(x, u(x))u(x)− F (x, u(x))

∣∣∣∣ ≤ C2(t0 + a(x)tq
+

0 ∨ t
q−

0 ).

Hence we have

1

θ
〈J ′(u), u〉 − J(u) =

∫
Ωu

(
1

θ
f(x, u(x))u(x)− F (x, u(x))

)
dx

+

∫
Ω\Ωu

(
1

θ
f(x, u(x))u(x)− F (x, u(x))

)
dx

≥ −C2

∫
Ω\Ωu

(t0 + a(x)tq
+

0 ∨ t
q−

0 )dx

≥ −C2t0|Ω| − C2t
q+

0 ∨ t
q−

0 ‖a‖L1(Ω).

Similarly we have

1

θ
〈K ′(u), u〉 −K(u) ≥ −C3t0|Γ2| − C3t

r+

0 ∨ tr
−

0 ‖b‖L1(Γ2).

Thus we have

I(u)− 1

θ
〈I ′(u), u〉 = Ψ(u)− 1

θ
〈Ψ′(u), u〉 −

(
J(u)− 1

θ
〈J ′(u), u〉

)
−
(
K(u)− 1

θ
〈K ′(u), u〉

)
≥
(

1− µ
p+

− 1

θ

)
m0c‖u‖p

−

Y − C5

for some constant C5.
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Proposition 3.15. Assume that (M.0)-(M.2), (A.0)-(A.3), (f.1)-(f.3) and
(g.1)-(g.3) hold. Then the functional I satisfies the Palais-Smale condition,
that is, if a sequence {un} ⊂ Y satisfies that limn→∞ I(un) = γ ∈ R exists and
limn→∞ ‖I ′(un)‖Y ∗ = 0, then {un} has a convergent subsequence.

Proof. Let {un} ⊂ Y satisfy that limn→∞ I(un) = γ ∈ R exists and
limn→∞ ‖I ′(un)‖Y ∗ = 0.

Step 1. The sequence {un} is bounded in Y . Indeed, if it is false, then pass-
ing to a subsequence, we can assume that limn→∞ ‖un‖Y =∞. By proposition
3.14, we have

I(un) ≥ m0c

(
1− µ
p+

− 1

θ

)
‖un‖p

−

Y −
1

θ
‖I ′(un)‖Y ∗‖un‖Y − C5

for large n. Since 1−µ
p+ −

1
θ > 0, p− > 1 and limn→∞ ‖I ′(un)‖Y ∗ = 0, we have

I(un)→∞ as n→∞. This is a contradiction.
Step 2. Since Y is a reflexive Banach space from Proposition 3.6, there

exist a subsequence {un′} of {un} and u ∈ Y such that un′ → u weakly in Y
as n′ →∞. Since {un′ − u} is bounded in Y and limn′→∞ ‖I ′(un′)‖Y ∗ = 0, we
see that

〈I ′(un′), un′ − u〉 → 0 as n′ →∞.

By Propositions 2.9 and 2.11, un′ → u strongly in L
q(·)
a(·)(Ω) and L

r(·)
b(·)(Γ2) as

n′ →∞. From (f.1), using the Hölder inequality,∣∣∣∣∫
Ω

f(x, un′(x))(un′(x)− u(x))dx

∣∣∣∣
≤
∫

Ω

C1(1 + a(x)|un′(x)|q(x)−1)|un′(x)− u(x)|dx

≤ C1

∫
Ω

(a(x)1/q(x)|un′(x)− u(x)|

+ a(x)1/q′(x)|un′(x)|q(x)−1a(x)1/q(x)|un′(x)− u(x)|)dx
≤ 2C1‖1‖Lq′(·)(Ω)‖a

1/q(·)|un′ − u|‖Lq(·)(Ω)

+ 2C1‖a1/q′(·)|un′(·)|q(·)−1‖Lq′(·)(Ω)‖a
1/q(·)|un′ − u|‖Lq(·)(Ω).

Since

ρq′(·)(a
1/q′(·)|un′ |q(·)−1) =

∫
Ω

a(x)|un′(x)|q(x)dx

is bounded, we see that ‖a1/q′(·)|un′ |q(·)−1‖Lq′(·)(Ω) is bounded. Since ‖un′ −
u‖

L
q(·)
a(·)(Ω)

→ 0 as n′ →∞, we see that

lim
n′→∞

〈J ′(un′), un′ − u〉 = lim
n′→∞

∫
Ω

f(x, un′(x))(un′(x)− u(x))dx = 0.



20 Existence of weak solutions for the Kirchhoff-type equation with...

Similarly, we have

lim
n′→∞

〈K ′(un′), un′ − u〉 = lim
n′→∞

∫
Γ2

g(x, un′(x))(un′(x)− u(x))dσx = 0.

Thus we have

lim
n′→∞

〈Ψ′(un′), un′ − u〉

= lim
n′→∞

(〈J ′(un′), un′ − u〉+ 〈K ′(un′), un′ − u〉+ 〈I ′(un′), un′ − u〉) = 0.

Since |〈Ψ′(un′), un′−u〉| ≥ m0

l |〈Φ
′(un′), un′−u〉|l, we have limn′→∞〈Φ′(un′), un′−

u〉 = 0. Since un′ → u weakly in Y ,

lim
n′→∞

〈Φ′(un′)− Φ′(u), un′ − u〉 = 0.

Since {un′} is bounded in Y , it follows from Proposition 3.7 that∫
Ω

h1(x)|∇un′(x)−∇u(x)|p(x)dx→ 0 as n′ →∞,

so un′ → u strongly in Y .

4 Main theorems

In this section, we state the main theorems (Theorem 4.3, 4.5 and 4.6).

Definition 4.1. We say that u ∈ Y is a weak solution of (1.1) if u satisfies
that

M

(∫
Ω

A(y,∇u(y))dy

)∫
Ω

a(x,∇u(x)) ·∇v(x)dx

=

∫
Ω

f(x, u(x))v(x)dx+

∫
Γ2

g(x, u(x))v(x)dσx for all v ∈ Y. (4.1)

Remark 4.2. Since C∞0 (Ω) ⊂ Y , if u ∈ Y satisfies (4.1), then the equation
(1.1) holds in the distribution sense. Clearly we can see that u ∈ Y is a weak
solution of (1.1) if and only if u is a critical point of the functional I defined
by (3.8), that is, I ′(u) = 0.

Then we obtain the following three theorems.

Theorem 4.3. Let Ω be a bounded domain of RN (N ≥ 2) with a C0,1-
boundary Γ satisfying (1.2). Under the hypotheses (M.0)-(M.2), (A.0)-(A.3),
(f.1)-(f.3) and (g.1)-(g.3), the problem (1.1) has a nontrivial weak solution.
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Remark 4.4. This theorem extends the result of Dai and Hao [14] in which
the authors considered the case where A(x, ξ) = 1

p(x) |ξ|
p(x) and Γ2 = ∅.

We impose one more assumption.
(f.4) Fix δ′ ∈ (0, 1) to be sufficiently small. The function f(x, t) satisfies

the following inequality.

f(x, t) ≥
{
ctm−1 for t ∈ [δ′, 1],
0 for t ∈ [0,∞) \ [δ′, 1],

where c > 0 and 0 < m < 1.
For example, A function f(x, t) = χδ′(t)|t|m−2t+a(x)|t|q(x)−2t, where χδ′ ∈

C0(R) satisfying 0 ≤ χδ′ ≤ 1,

χδ′(t) =

{
0 for |t| ≤ δ′/2
1 for δ′ ≤ |t| ≤ 1

and a function a = a(x) satisfies (f.1) verifies (f.1)-(f.4).

Theorem 4.5. In addition to the hypotheses of Theorem 4.3, assume that (f.4)
also holds. Then the problem (1.1) has at least two nontrivial weak solutions.

Finally, in addition to the hypotheses of Theorem 4.3, we assume the fol-
lowing hypotheses.

(A.4) A(x, ξ) is even with respect to ξ, that is, A(x,−ξ) = A(x, ξ) for a.e.
x ∈ Ω and all ξ ∈ RN .

(f.5) f(x, t) is odd, that is, f(x,−t) = −f(x, t) for a.e. x ∈ Ω and all t ∈ R.
(g.4) g(x, t) is odd, that is, g(x,−t) = −g(x, t) for σ-a.e. x ∈ Γ2 and all

t ∈ R.
Then we can derive that there exist infinitely many weak solution.

Theorem 4.6. In addition to the hypotheses of Theorem 4.3, assume that
(A.4), (f.5) and (g.4) also hold. Then the problem (1.1) has infinitely many
nontrivial weak solutions.

5 Proofs of Theorem 4.3, 4.5 and 4.6

In this section, we give proofs of Theorem 4.3, 4.5 and 4.6. Assume that
(M.0)−(M.2), (A.1)-(A.3), (f.1)-(f.3) and (g.1)-(g.3) hold. In order to derive
the theorems, we use the variational method.

Lemma 5.1. Assume that (f.1)-(f.2) and (g.1)-(g.2) hold. Then we obtain the
following.

(i) |F (x, t)| ≤ C1(|t| + a(x)
q(x) |t|

q(x)) ≤ C ′1(1 + a(x)|t|q(x)) for a.e. x ∈ Ω and

t ∈ R.
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(ii) |G(x, t)| ≤ C2(|t| + b(x)
r(x) |t|

r(x)) ≤ C ′2(1 + b(x)|t|r(x)) for σ-a.e. x ∈ Γ2

and t ∈ R.

(iii) There exists γ ∈ Lα(·)(Ω) such that γ(x) > 0 a.e. x ∈ Ω and F (x, t) ≥
γ(x)tθ for all t ∈ [t0,∞) and a.e. x ∈ Ω, where t0 is the constant in (f.2).

(iv) There exists δ ∈ Lβ(·)(Γ2) such that δ(x) > 0 σ-a.e. x ∈ Γ2 and
G(x, t) ≥ δ(x)tθ for all t ∈ [t0,∞) and σ-a.e. x ∈ Γ2, where t0 is the constant
in (g.2).

Proof. (i) and (ii) easily follows from (f.1), (g.1) and the definitions (3.6), (3.7)
of F , G, respectively.

(iii) From (f.2), for t ≥ t0,

0 < θF (x, t) ≤ f(x, t)t for a.e. x ∈ Ω. (5.1)

Put γ(x) = F (x, t0)t−θ0 . Then γ(x) > 0 for a.e. x ∈ Ω and it follows from (i)
that

γ(x) ≤ C ′1(1 + a(x)t
q(x)
0 )t−θ0 ≤ C ′1(1 + a(x)tq

+

0 ∨ t
q−

0 )t−θ0 .

So γ ∈ Lα(·)(Ω). From (5.1),

θ

τ
≤ f(x, τ)

F (x, τ)
=

∂F
∂τ (x, τ)

F (x, τ)
for τ ≥ t0.

Integrating this inequality over (t0, t), we have

θ log
t

t0
≤ log

F (x, t)

F (x, t0)
for all t ≥ t0.

This implies that F (x, t) ≥ γ(x)tθ for all t ≥ t0.

(iv) follows from the similar argument as (iii) using (g.2).

5.1 Proof of Theorem 4.3

For a proof of Theorem 4.3, we apply the following standard Mountain-Pass
Theorem (cf. Willem [35]).

Proposition 5.2. Let (V, ‖ · ‖V ) be a Banach space and I ∈ C1(V,R) be a
functional satisfying the Palais-Smale condition. Assume that I(0) = 0, and
there exist ρ > 0 and z0 ∈ V such that ‖z0‖V > ρ, I(z0) ≤ I(0) = 0 and

α := inf{I(u);u ∈ V with ‖u‖V = ρ} > 0.

Put G = {ϕ ∈ C([0, 1], V );ϕ(0) = 0, ϕ(1) = z0} and β = inf{max I(ϕ([0, 1]);ϕ ∈
G}. Then β ≥ α and β is a critical value of I.
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We apply Proposition 5.2 with (V, ‖ ·‖V ) = (Y, ‖ ·‖Y ). By Proposition 3.15,
the functional I satisfies the Palais-Smale condition. By (3.12), there exists
ρ ∈ (0, 1) such that

inf{I(u);u ∈ Y with ‖u‖Y = ρ} > 0. (5.2)

Since Ψ(0) = J(0) = K(0) = 0, we have I(0) = 0.
We show that there exists u0 ∈ Y such that ‖u0‖Y > ρ and I(u0) ≤ 0.

Choose v0 ∈ C∞0 (Ω) such that v0 ≥ 0 and W = {x ∈ Ω; v0(x) ≥ t0} has a
positive measure, where t0 is as in (f.2). We see that F (x, v0(x)) > 0 for a.e.
x ∈ W from (f.2). Let t > 1 and define Wt = {x ∈ Ω; tv0(x) ≥ t0}, then
W ⊂ Wt. By Lemma 5.1 (iii), there exists γ ∈ Lα(·)(Ω)(⊂ L1(Ω)) such that
γ(x) > 0 a.e. x ∈ Ω and F (x, t) ≥ γ(x)tθ for t ∈ [t0,∞). Thereby,∫

Wt

F (x, tv0(x))dx ≥
∫
Wt

γ(x)tθv0(x)θdx ≥ tθL(v0),

where L(v0) =
∫
W
γ(x)v0(x)θdx > 0. For t ∈ [0, t0], |F (x, t)| ≤ C ′1(1 +

a(x)tq(x)) ≤ C ′1(1 + a(x)tq
+

0 ∨ tq
−

0 ). By (f.2), F (x, st) ≥ F (x, t)sθ for t ∈
R \ (−t0, t0) and s > 1. Indeed, if we define h(s) = F (x, st), then

h′(s) = f(x, st)t =
1

s
f(x, st)st ≥ θ

s
F (x, st) =

θ

s
h(s).

Thus h′(s)/h(s) ≥ θ/s, so log(h(s)/h(1)) ≥ θ log s. This implies h(s) ≥ h(1)sθ.
By (A.3) implies that

A(x, tξ) +
h1(x)

p(x)
≤ tp(x)

(
A(x, ξ) +

h1(x)

p(x)

)
for t > 1. (5.3)

Indeed, put k(s) = A(x, sξ) + h1(x)/p(x) for s ≥ 1. Then we have

k′(s) =
1

s
a(x, sξ) · sξ ≤ p(x)

s

(
A(x, sξ) +

h1(x)

p(x)

)
=
p(x)

s
k(s).

Thereby k′(s)/k(s) ≤ p(x)/s for s ≥ 1. Integrating this inequality over (1, t),
we get (5.3). Thus we see that

Φ(tu) =

∫
Ω

A(x, t∇u(x))dx

≤
∫

Ω

{
tp(x)

(
A(x,∇u(x)) +

h1(x)

p(x)

)
− h1(x)

p(x)

}
dx

≤ tp
+

Φ(u) + (tp
+

− 1)‖h1/p‖L1(Ω)

≤ tp
+

(Φ(u) + C6)
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for u ∈ Y and t > 1, with some constant C6. Hence we have

I(tv0) = M̂(Φ(tv0))− J(tv0)

≤ m1

(
Φ(tv0) +

1

k
Φ(tv0)k

)
−
∫
Wt

F (x, tv0(x))dx−
∫

Ω\Wt

F (x, tv0(x))dx

≤ m1

(
tp

+

(Φ(v0) + C6) +
1

k
tkp

+

(Φ(v0) + C6)k
)

− tθL(v0) + C ′1(|Ω|+ tq
+

0 ∨ t
q−

0 ‖a‖L1(Ω)).

Since θ > kp+ ≥ p+ from (f.2) and L(v0) > 0, we can see that I(tv0) → −∞
as t → ∞. Hence there exists t1 > 1 such that ‖t1v0‖Y > ρ and I(t1v0) ≤ 0.
Put u0 = t1v0.

If we define ϕ(t) = tu0, then ϕ ∈ G, so G 6= ∅. Hence all the hypotheses
of Proposition 5.2 hold. Therefore, β = inf{max I(ϕ([0, 1]);ϕ ∈ G} satisfies
that β ≥ α > 0 and β is a critical value of I, that is, there exists u1 ∈ Y such
that I(u1) = β and I ′(u1) = 0. Thus u1 is a weak solution of (1.1). Since
I(u1) = β ≥ α > 0 = I(0), u1 is a nontrivial weak solution of (1.1). This
completes the proof of Theorem 4.3.

5.2 Proof of Theorem 4.5.

It follows from (f.4) that for 0 ≤ t ≤ 1,

F (x, t) ≥
{ ∫ t

δ′
f(x, s)ds if t ≥ δ′,

0 if t < δ′
≥
{

c
m (tm − (δ′)m) if t ≥ δ′,
0 if t < δ′.

Fix t1 ∈ (0, 1) so that small enough and choose δ′ ∈ (0, 1) such that (δ′)m ≤ t1.
If (δ′)m ≤ t, then F (x, t) ≥ c

m (tm − t) since (δ′)m ≥ δ′. Choose ϕ ∈ C∞0 (Ω) so
that 0 ≤ ϕ ≤ 1 and ϕ 6≡ 0. Put Ωδ′ = {x ∈ Ω; (δ′)m ≤ t1ϕ(x)}. Then we note
that |Ω \ Ωδ′ | → 0 as δ′ → 0. Thus we have

J(t1ϕ) =

∫
Ω

F (x, t1ϕ(x))dx

≥
∫

Ωδ′

F (x, t1ϕ(x))dx

≥ c

m

∫
Ωδ′

((t1ϕ(x))m − t1ϕ(x))dx

≥ c

m
tm1

(∫
Ω

ϕ(x)mdx−
∫

Ω\Ωδ′
ϕ(x)mdx

)
− c

m
t1

∫
Ωδ′

ϕ(x)dx

≥ c

m
tm1

(∫
Ω

ϕ(x)mdx− |Ω \ Ωδ′ |
)
− c

m
t1|Ω|.
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If we replace δ′ with smaller one, if necessary, we may assume that
∫

Ω
ϕ(x)mdx−

|Ω \ Ωδ′ | > 0.

On the other hand, since A(x, ξ) is convex with respect to ξ from Lemma
3.3 and A(x,0) = 0, we have A(x, t1ξ) = A(x, t1ξ + (1 − t1)0) ≤ t1A(x, ξ).
Thus

Φ(t1ϕ) =

∫
Ω

A(x, t1∇ϕ(x))dx ≤ t1Φ(ϕ).

Since M̂ is convex and monotone non-decreasing, we have

M̂(Φ(t1ϕ)) ≤ M̂(t1Φ(ϕ)) = M̂(t1Φ(ϕ) + (1− t1)Φ(0)) ≤ t1M̂(Φ(ϕ)).

Therefore, we have

I(t1ϕ) = M̂(Φ(t1ϕ)− J(t1ϕ) ≤ t1
(
M̂(Φ(ϕ)) +

c

m
|Ω|
)

− c

m
tm1

(∫
Ω

ϕ(x)mdx− |Ω \ Ωδ′ |
)
.

Since 0 < m < 1, if t1 > 0 is small enough, then we see that I(t1ϕ) < 0.
By Proposition 3.13, I is bounded from below on Bρ(0), where Bρ(0) = {v ∈
Y ; ‖v‖Y < ρ}, ρ is as in (5.2). Hence

−∞ < c := inf
v∈Bρ(0)

I(v) < 0.

Let 0 < ε < infv∈∂Bρ(0) I(v) − inf
v∈Bρ(0)

I(v). Here we note that

infv∈∂Bρ(0) I(v) > 0 from (5.2). There exists u ∈ Bρ(0) such that

inf
v∈Bρ(0)

I(v) ≤ I(u) ≤ inf
v∈Bρ(0)

I(v) + ε2.

Since inf
v∈Bρ(0)

I(v) < 0, we can choose u ∈ Bρ(0) so that I(u) < 0. By

applying the Ekeland variational principle (Ekeland [18, Theorem 1.1]) to the
complete metric space Bρ(0), there exists uε ∈ Bρ(0) such that

I(uε) ≤ I(u), (5.4)

I(uε) ≤ I(v) + ε‖v − uε‖Y for all v ∈ Bρ(0), (5.5)

‖u− uε‖Y ≤ ε. (5.6)

Define a functional Î : Bρ(0)→ R by Î(v) = I(v) + ε‖v − uε‖Y for v ∈ Bρ(0).
Since I(uε) ≤ I(u) < 0 from (5.4) and I(v) > 0 for all v ∈ ∂Bρ(0), we have

uε ∈ Bρ(0). Choose ρ′ > 0 small enough so that uε+w ∈ Bρ(0) for w ∈ Bρ′(0).



26 Existence of weak solutions for the Kirchhoff-type equation with...

From (5.5), since Î(uε) ≤ Î(uε + w) for all w ∈ Bρ′(0), we have

〈I ′(uε), w〉+ ε‖w‖Y
‖w‖Y

=
〈I ′(uε), tw〉+ εt‖w‖Y − (Î(uε + tw)− Î(uε))

t‖w‖Y
+
Î(uε + tw)− Î(uε)

t‖w‖Y
.

Here we note that from (5.5),

Î(uε + tw)− Î(uε) = I(uε + tw) + ε‖tw‖Y − I(uε) ≥ 0

for t ∈ (0, 1). Hence

〈I ′(uε), w〉+ ε‖w‖Y
‖w‖Y

≥ 〈I
′(uε), tw〉 − (I(uε + tw)− I(uε))

t‖w‖Y
→ 0 as t→ +0.

So 〈I ′(uε), w〉 + ε‖w‖Y ≥ 0 for all w ∈ Bρ′(0), so 〈I ′(uε), w〉 ≥ −ε‖w‖Y .

Replacing w with −w, we have |〈I ′(uε), w〉| ≤ ε‖w‖Y for all w ∈ Bρ′(0). Thus
‖I ′(uε)‖Y ∗ ≤ ε. Letting ε → 0, we see that I(uε) → c and I ′(uε) → 0 in Y ∗.
Since I satisfies the Palais-Smale condition in Y and I ∈ C1(Y,R), there exist a
subsequence {un} of {uε} and u2 ∈ Bρ(0) such that un → u2 in Y and I ′(u2) =
0. Therefore, u2 is a weak solution of (1.1). Since I(u2) = c < 0 = I(0), u2

is a nontrivial weak solution of (1.1). Since I(u2) = c < 0 = I(0) < I(u1), we
have u1 6= u2. This completes the proof of Theorem 4.5.

5.3 Proof of Theorem 4.6

We apply the following Symmetric Mountain-Pass Theorem due to the Rabi-
nowitz [32, Theorem 9.12] (cf. Xie and Xiao [36, Proposition 2.1]).

Proposition 5.3. Let V be an infinite-dimensional real Banach space. A
functional I : V → R is of C1-class and satisfies the Palais-Smale condition.
Furthermore, assume that

(I.1) I(0) = 0 and I is an even functional, that is, I(−u) = I(u) for all
u ∈ V .

(I.2) There exist positive constants α and ρ such that

inf
u∈∂Bρ(0)

I(u) ≥ α.

(I.3) For each finite-dimensional linear subspace V1 ⊂ V , the set {u ∈
V1; I(u) ≥ 0} is bounded.

Then I has an unbounded sequence of critical values.
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We apply Proposition 5.3 with V = Y . Note that the functional I defined
by (3.8) is of class C1 (Proposition 3.11 (i)) and satisfies the Palais-Smale
condition (Proposition 3.15). From (A.4), (f.5) and (g.4), (I.1) is trivial. (I.2)
follows from (3.12). Thus it suffices to derive (I.3).

Let u ∈ Y with ‖u‖Y > 1. Since it follows from (3.5) that

Ψ(u) = M̂(Φ(u)) ≤ m1

(
Φ(u) +

1

k
Φ(u)k

)
,

Φ(u) ≤ c1‖h0‖Lp′(·)(Ω)‖u‖Y + C1‖u‖p
+

Y and k ≥ 1, we have Ψ(u) ≤ C5‖u‖kp
+

Y

for some constant C5 > 0. Since F (x, t) is even with respect to t, it follows
from Lemma 5.1 (iii) that F (x, t) ≥ γ(x)|t|θ for |t| ≥ t0. Define Ωt0 = {x ∈
Ω; |u(x)| ≥ t0}. Then

J(u) =

∫
Ω

F (x, u(x))dx =

∫
Ωt0

F (x, u(x))dx+

∫
Ω\Ωt0

F (x, u(x))dx.

From Lemma 5.1 (i),∫
Ω\Ωt0

|F (x, u(x))|dx ≤ C ′1|Ω|+ tq
+

0 ∨ t
q−

0 ‖a‖L1(Ω) =: C ′2.

Hence we have

J(u) ≥
∫

Ωt0

γ(x)|u(x)|θdx− C ′2

=

∫
Ω

γ(x)|u(x)|θdx−
∫

Ω\Ωt0
γ(x)|u(x)|θdx− C ′2

≥
∫

Ω

γ(x)|u(x)|θdx− C7,

where C7 is a constant. Similarly we have

K(u) ≥
∫

Γ2

δ(x)|u(x)|θdσx − C8,

where C8 is a constant.

We note that (∫
Ω

γ(x)|u(x)|θdx+

∫
Γ2

δ(x)|u(x)|θdσ
)1/θ

(5.7)

is a norm in Y .
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Let Y1 be any finite-dimensional linear subspace of Y . Since Y1 is of finite-
dimensional, the above norm is equivalent to the norm ‖u‖Y in Y1, so there
exists C9 > 0 such that

C9‖u‖θY ≤
∫

Ω

γ(x)|u(x)|θdx+

∫
Γ2

δ(x)|u(x)|θdσx.

Therefore, for u ∈ Y1 with ‖u‖Y > 1, we have

I(u) ≤ C5‖u‖kp
+

Y − C9‖u‖θY + C7 + C8.

If u ∈ Y1 with ‖u‖Y > 1 satisfies I(u) ≥ 0, then we have C9‖u‖θY ≤ C5‖u‖kp
+

Y +
C6 + C7. Since θ > kp+, the set {u ∈ Y1; ‖u‖Y > 1, I(u) ≥ 0} is bounded, so
{u ∈ Y1; I(u) ≥ 0} is bounded.

Since all the assumptions of Proposition 5.3 hold, I has an unbounded
sequence of critical values, so problem (1.1) has infinitely many weak solutions.
This completes the proof of Theorem 4.6.
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